
Automated Modeling of LonWorks Building Automation Networks

Mario Neugebauer, Jörn Plönnigs, Klaus Kabitzsch
Dresden University of Technology

Institute for Applied Computer Science
{mn7,jp14,kk10}@inf.tu-dresden.de

Peter Buchholz
Universität Dortmund

Informatik IV
peter.buchholz@cs.uni-dortmund.de

Abstract

Developing building automation systems requires care-
ful planning of the applications and the network topology.
Editing a model with up to 32,000 nodes manually is very
time-consuming. In this paper an automated approach
for modeling LonWorks networks is presented. As a ba-
sis the existing LNS Network Operating System which is
suited for integration and management purposes is used.
It contains all information implicitly. Therefore, certain
data has to be extracted to generate an explicit model for
performance evaluation. The approach requires no addi-
tional effort for the network developer to acquire a com-
plete model of the LonWorks network. The model is used
for accumulated arrival rate estimation and is a basis for
later queuing analysis.

1. Introduction

Existing tools for development of LonWorks building
automation networks allow fast and easy planning of sys-
tems with up to 32,000 nodes. Network development is
divided in two parts: determining the applications by con-
nections between the nodes at the application layer and
planning the architecture of the network by dimensioning
the channels and connecting them to devices. Figure 1
shows a part of the LonMaker that is a common tool for
the design of building automation systems [5].

The interdependency between application and physi-
cal layer and the impact from real processes are hard to
overlook for the network designer. On the one hand bot-
tlenecks and potential instabilities are not easily to iden-
tify, but on the other hand development needs to be fast
and therefore does not allow detailed investigations of the
future system behavior. However, careful performance
evaluation is required to avoid overload in channels, long
transaction times and unstable processes.

Related work in the area of modeling fieldbus networks
primarily deals with creation of models for simulation
purposes [17], [15], [16]. Hintze et al. [3], [4] devel-
oped a method for performance evaluation of industrial
fieldbus networks. Models were described in different
languages (VHDL, UML, ESTELLE). After code gener-

physical layer
with devices
and channels

application layer
with profiles,
network variables
and bindings

Figure 1. The LonMaker as a tool for devel-
opment and integration of LonWorks net-
works

ation the models were fed into simulation tools. Detailed
knowledge about the process, the internal device behav-
ior, the hardware and even the software is essential for
this approach. The model building is not supported by
databases where structural design or device information
are contained. All components of the entire system model
require manual editing. This leads to a tremendous effort
for evaluation of common LonWorks networks with sev-
eral thousand nodes.

Automatic model building can be found in adjacent dis-
ciplines as well. Woodside et al. [19] propose to include
a performance prediction into a software design environ-
ment. Details about the structure of the system (program
code) are used automatically without requiring additional
effort for model building. It enables the software devel-
oper to continuously check performance properties during
the design process.

In this paper we present an approach to automatically
develop models for LonWorks networks. The goal is
to model a building automation system using knowledge
from existing design databases (LNS Network Operating
System by Echelon) for subsequent performance predic-
tion. Data about the network (subnet, channel etc.), de-



vice properties (e. g. ability to measure temperature and
humidity), connections (bindings) and message structure
(size, payload, etc.) are contained in the LNS Network
Operating System and standard device descriptions [5].
They are reused for model creation.

The main problem is to extract implicitly contained
information suited for integration and maintenance tasks
from the LNS Network Operating System. They have
to be transformed to an explicit model for further per-
formance evaluation. Generating our system model does
not require additional effort for adjusting the network el-
ements and process features. Only information already
existing in machine-readable form is deployed. Our ap-
proach enables the developer of a LonWorks building au-
tomation network to acquire a complete model without ad-
ditional effort. The performance of the control network is
analyzed based on this model.

Extractor
LNS

System
Operating
Network

LNS
deduce

paket model

data base
devicedata base

device
GUI

join PHY
and APP

NetPlan modeler

data base
model

Figure 2. General approach description

In the next section we present our general model de-
scription for the application1 layer and the physical2 layer.
Merging both layers leads to the communication model.
In the third section the transformation to the queuing
model is addressed followed by the modeling of an ex-
ample network in section four.

2. Extracting from Implicit Model

The objective of our approach is to model a LonWorks
network for analysis purposes. In Figure 2 the major steps
which need to be taken are shown.

First, the physical and application layer structures in
the LNS Network Operating System are analyzed and the
information necessary for modeling is gathered by our
LNS Extractor. The gained specification is saved in the
model database which is an intermediate database. Not
only the model but also results obtained by later analysis
are stored therein.

Second, information about device types and positions
are joined with device templates from the device database
(similar to [9], [13]). It was developed for our model-
ing approach and is a collection of configured device tem-
plates. They are automatically generated from XIF-files

1For simplification we understand the application layer in our work
as all mechanisms above the network layer. It comprises all items which
a LonWorks developer has to configure for an application.

2All concrete artifacts in the network are considered as physical layer
in this work.

(containing standard device description) with generic as-
sumptions about connected processes and are instantiated
and adjusted in the NetPlan modeler.

Last, the application layer is mapped automatically on
to the physical layer to obtain a model of the communica-
tion in the network. This model then provides all neces-
sary information for later analysis.

In the next subsections we present the model which is
divided in three parts - physical, application and commu-
nication model. The unified modeling language (UML)
is used for description to enable better understanding and
easy transformation to software.

2.1. Physical Layer Model
The physical layer comprises all devices (holding pro-

files), channels (connected to devices) and network el-
ements which interconnect the channels (router, bridge,
gateway).

Neuron
Element Channel

Subnet

NeuronPortDeviceBridgeRouterGateway

DomainNetwork

1..127 1..*

1 1

1

1

1 2..* 2..*2..*1111

1 1..* 1 1..255

Figure 3. Physical structure

Our model of the physical layer is shown in Figure
3. NeuronElement is an abstract base class for all ele-
ments in the network which have a NeuronC [11] chip
inside. Four classes inherit from NeuronElement: De-
vice (contains profiles with NetworkVariables for applica-
tions), Bridge (connects two channels within one subnet),
Router (connects two channels in different subnets) and
Gateway (connects to other Domains). Because the con-
nection to other domains are not realizable with the Lon-
Maker tool and the underlying LNS Network Operating
System we neglect gateways in further investigations.

A NeuronElement is connected via a NeuronPort to a
distinct Channel. It is comparable with a plug from a
channel to an element with a NeuronC chip. Hence, multi-
port devices like routers, bridges and gateways are associ-
ated to several NeuronPorts.

LonWorks domains are divided into subnets. Each sub-
net contains dedicated channels. This relation is shown
in Figure 3 by the aggregation of Channels in a Subnet.
Hence, all NeuronElements are assigned to a subnet as
well.

Additionally, the class Binding hosts information about
the service type used. Several service types are available
in LonWorks networks: unacknowledged, acknowledged,
repeated, authenticated and request/response. Detailed in-
formation about service types can be found in [11].

All information necessary to build up this model is con-
tained by the LNS Network Operating System. We auto-

2



matically read the entire structure of the network (domain,
subnet, channels with bit rate, devices with transceivers)
from this database and generate the model as mentioned
above.

2.2. Application Layer Model
Applications in LonWorks networks are assembled by

connections (bindings) between NetworkVariables which
are contained in standardized profiles [10]. The network
developer uses software tools for establishing these bind-
ings (see Figure 1).

For our modeling approach templates from the de-
vice database are instantiated and configured. A tem-
plate consists of generic devices which host generic net-
work variables (similar to profile in Figure 4). If the net-

Figure 4. Profile in a motor controller unit by
WAREMA [18]

work developer does not configure the instantiated de-
vices we assume a standard process behavior. To ob-
tain a more precise model additional information about
the controlled processes is necessary. The NetPlan mod-
eler enables the network developer to readjust the corre-
sponding parameters. The process behavior is represented
by variables which specify minimum, mean and maxi-
mum arrival rates. Previous work dealt with the under-
lying sendOnDelta concept [13], [12] and measurements
for characterizing processes [6].

It is not necessary to provide detailed information
about the hardware or the software running on the devices.
A specification from the manufacturer of the device (gen-
erated for the mandatory XIF-file anyway) is sufficient to
generate a device model. This saves effort for the network
developer, since no further research for parameters which
can not be found in the specification is needed.

Group

Member

Binding SubnetNetwork
Variable

0..* 0..*is destination

has source

Domain

Device

0..*

1..*
1

0..*

0..* is destination 0..*

0..*is destination

is destination

0..*

1..*

ho
st

s

1

1 0..*

Figure 5. Application structure

Figure 5 presents the dependencies of a binding within
our model. The class Binding has associations represent-

ing addressing in LonWorks networks [11]. Only one net-
work variable can be the source address of a binding (has
source in Figure 5).

If unicast is used a second network variable has to be
defined as the destination address. Other possible destina-
tion addresses are: multicast to groups, broadcast in sub-
nets or domains.

During usual operation unicast to network variables
and multicast to groups is needed. Only configuration
and management actions require broadcasting to subnets
or domains.

Again, the data required for building the application
layer model (binding; source and destination address; pro-
files with network variables; variable types) either come
from the LNS Network Operating System or from the
device database. They are contained implicitly in this
database. We extract them automatically to generate the
model like mentioned above.

With the association from NetworkVariable to Device
we hold a connection from the physical layer to the ap-
plication layer. However, the impact from the application
layer to the physical layer and possibly vice versa is not
known and will be the subject in the next subsection.

2.3. Deriving the Communication Model
After modeling the application and physical layer in

the NetPlan modeler, the information is mapped to derive
a communication model. The aim of this mapping is to
determine the impact of the behavior at the application
layer to the packets actually sent with certain arrival rates
and sizes at the physical layer.

So far, the only connection between the layers is the
association of the network variable to a distinct device.
Hence, the network variable which is a source for a bind-
ing is taken as a starting point for the packet transmission.
With the knowledge about the destination of the binding
the way of the packet through the entire network is de-
termined. Therefor, we apply tree searching through the
physical structure [13]. Depending on the type of the ad-
dressing it can be one certain way, several ways, regions
of the network or the entire network.

Subsequently, the service type of the binding has to be
evaluated. If, for instance, a message from the sender to
the receiver requires an acknowledgment this has to be
taken into account by a flow in the opposite direction.

The classes which are to instantiate for the commu-
nication model are presented in Figure 6. Modeling the
communication behavior means to derive the appropriate
Communications for each Binding. An instance of Bind-
ing has one or more instances of Communication associ-
ated (dissects in in Figure 6).

In an instance of Communication all information about
one packet transfer from a sender to a receiver is held. It
starts with the device where the source network variable is
located. Subsequently, all elements which are passed by
the packet are collected in a list in Communication.

Apart from the way of the packet, the impact of the

3



Router

Bridge

Gateway

Channel

Communication

device

Group

Member

Binding SubnetNetwork
Variable

0..* 0..*is destination

has source

Domain

NeuronPort

0..*

0..*

0..*

0..*

goes across

goes across

goes across

goes across

0..*
0..* 0..* 1..*

0..* floods

0..*
ends at
starts at1

dissects in

0..*

1..*
1

0..*

0..* is destination 0..*

1..* 1

0..*is destination

is destination

0..*

0..1

0..* 0..* 0..*

goes across

mapping from APP to PHY

1 0..*

Figure 6. UML model for mapping from the
application layer to the physical layer

service type of the binding needs to be ascertained. The
number and size of packets which are exchanged between
the sender and the receiver have to be identified. If a mes-
sage requests an acknowledgment, the original way of the
packet is duplicated with inverse order of the passed ele-
ments. The resulting instances of Communication deter-
mine the two messages sent from sender to receiver and
vice versa.

Analyzing all bindings in the same way leads to a
model of the communication behavior. Together with the
arrival rates in Binding the model will be analyzed accord-
ing to load and transaction times of packets.

Characteristics of the Communication instances (ser-
vice type, pay load structure, retry counter, retry timer,
arrival rate) are contained in the LNS Network Operat-
ing System and in the device database. We automatically
read these information to derive a complete communica-
tion model.

3. Analysis with Queuing Networks

If a model of a control network is generated it has to
be analyzed according to the performance properties. In
this section we give an example for the mapping from the
afore mentioned model to a queuing analysis model [7],
[8]. This allows performance prediction of the control
network. The queuing network we propose uses multi-
ple message classes with a specific size. These message
classes can be derived from the communications (Subsec-
tion 2.3). The arrival rate of each message class is derived
separately [14].

Every communication contains a list of the elements
the message passes in the physical network. These el-
ements which are channels and ports need to be trans-
formed into the queuing model. A port can either belong
to a device or a router. Both buffer messages if the chan-
nel is busy and therefore each port is mapped as a FIFO
queue. If an entry for the queue length of a device or de-

Table 1. Mapping from the UML model to a
queuing analysis model

UML Model Name → Queuing Model

Communication → Message class
NeuronPort → Queue
Router → Additional delay station
Channel → Load dependent station

vice class is specified in the databases we use a finite ca-
pacity queue. Otherwise the queue capacity is assumed to
be infinite. Further, it takes about 3ms for the router to
process a message. Therefore, a router is described by a
delay station. A channel is modeled as a load dependent
service station with a varying service rate as a result of
the protocol behavior. Table 1 summarizes these mapping
rules.

The mapping can be performed completely automatic
based on the network model introduced before. The few
additional properties that are required in addition like
queue capacity of devices or delay times of routers can
be easily replaced by default values or ignored completely
without rendering the analysis impossible. Buchholz [1]
gives more detail in analyzing a p-predictive CSMA net-
work like the present LonWorks network with queuing
theory.

4. Case Study with Example Network

In the last part we want to present a case study with an
example LonWorks network. Processing network specifi-
cation from the intermediate model database into the Net-
Plan modeler should be verified. We presume an existing
device database and that the network was read into the
model database by the LNS Extractor.

Figure 7 shows the physical structure of our exam-
ple network. It consists of 7 subnets with 13 channels.
There are 25 devices (12 senders, 13 receivers), 6 two-port
routers and 6 two-port bridges connected to the channels.
Due to complexity the application layer dependencies are
not shown in Figure 7. However, there are 32 bindings in
the network using all available service types and address-
ing possibilities.

In our network example devices are used. The de-
vice database holds the generic templates necessary for
the model. NeuronPort instances which are printed in bold
in Figure 7 mark the near side ports of the routers. This
implies that it is the dedicated router of the subnet where
its near side port is connected to. A router only has one
such port, all others are far side ports. From the subnet
they are seen as ordinary devices.

After reading from the model database and merging
with the device information, a complete model of our ex-
ample network is generated. Our NetPlan modeler then
presents the network in a tree-like structure to the user for
access.

4



Channel 1 Channel 2

Channel 3Channel 4

Channel 6

Channel 7

Channel 8 Channel 9

Channel 10Channel 11Channel 12 Channel 13

Subnet 1

Subnet 2 Subnet 5

Subnet 6

Subnet 7

Subnet 4

NE 10

NP 12NP 13

Bridge 2

NP 15

Receiver 5

1.2.5

NE 12

NP 14

Sender 4

1.2.4

NE 11

NP 11

Receiver 4

1.2.2

NE 9

NP 10

Sender 3

1.2.1

NE 8

NE 16

NP 21

NP 20

Router 3

NP 22

Receiver 7

1.4.1

NE 17

NE 7

NP 9

NP 8

Router 1 NE 4

NP 5NP 4

Bridge 1

NP 1

1.1.1

NE 1

Sender 1

NP 2

Receiver 1

1.1.2

NE 2

NP 3

Receiver 2

1.1.3

NE 3

NP 6

Sender 2

1.1.5

NE 5

NP 7

Receiver 3

1.1.6

NE 6

NE 18

NP 23

NP 24

Router 4

NP 25

Sender 6

1.5.1

NE 19

NP 26

Receiver 8

1.5.2

NE 20

NP 29

Sender 7

1.6.1

NE 22

NP 30

Receiver 9

1.6.2

NE 23 NE 21

NP 28

NP 27

Router 5

NE 24

NP 32NP 31

Bridge 3

NP 34

Receiver 10

1.6.5

NE 26

NP 33

Sender 8

1.6.4

NE 25

NE 27

NP 36

NP 35

Router 6

NP 48

Sender 12

1.7.9

NE 36

NP 49

Receiver 13

1.7.10

NE 37

NE 35

NP 47NP 46

Bridge 6
NE 29

NP 38NP 39

Bridge 4
NE 32

NP 42NP 43

Bridge 5

NP 37

Sender 9

1.7.1

NE 28

NP 40

Receiver 11

1.7.3

NE 30

NP 41

Sender 10

1.7.4

NE 31

NP 44

Sender 11

1.7.6

NE 33

NP 45

Receiver 12

1.7.7

NE 34

NP 19

Receiver 6

1.3.2

NE 15

NP 18

Sender 5

1.3.1

NE 14

Channel 5

NE 13

NP 17

NP 16

Router 2

Subnet 3

Figure 7. Example network

Figure 8. Load estimation for the example
network

Subsequently, the generated model is analyzed accord-
ing to the accumulated arrival rate in the channels. It
means that the arrival rate which is produced by all de-
vices connected to the same channel is summed up. This
allows an estimation of potentially overloaded network
sections. Figure 8 shows the results of this estimation
for the example LonWorks network in our NetPlan mod-
eler. From these channel load calculations simple conclu-
sions about the devices connected to the same channel are
drawn. Heavy load sources can be identified easily.

For the second analysis step the model is analyzed us-
ing performance evaluation methods and tools [7]. More
detailed information about the building automation sys-
tem (e. g. transaction times, retransmission induced load)
is gained from this analysis. Even predictions of the sta-
bility of the plant are possible [6].

If required, the resulting model can be adjusted by the
LonWorks network developer. Process models are modi-

fied by changing the corresponding parameters in the in-
stance of a generic device. Therewith, different models
are available, even configurations for special scenarios
(e.g. critical process behavior or emergency situations)
are realizable.

5. Summary

In this paper we presented an approach for automatic
modeling of LonWorks networks. With the LNS Network
Operating System and a device database we are able to
generate a system model. It is divided in three parts: the
physical layer model, the application layer model and the
derived communication model. Only little additional ef-
fort is necessary to create this representation of the build-
ing automation system as a basis for later performance
prediction. Thus, developers of such systems are enabled
to evaluate the design with respect to performance prop-
erties. Models are to render more precisely by additional
information about the environmental process. Therewith,
more accurate estimations are to achieve.

Using an example network we demonstrated the fea-
sibility of our approach. It is possible to read a struc-
ture from the model database, join it with information
about the devices and deduce a communication model.
We automatically calculated the accumulated arrival rate
in the channels and deduced bottlenecks in the example
network.

The availability of better device models (more detailed
XIF-files) and estimations about the processes improve
our results. Developing a connection to existing data sets
about devices [9] are conceivable but require further in-
vestigation.

The method is applicable where certain design infor-
mation about control networks are available in machine-

5



readable form. Beside the presented approach for Lon-
Works networks the method is applicable i. e. for EIB
based networks. Using the DCOM library Falcon for ac-
cess to the design platform ETS3 [2] enables extraction of
the neccessary information about the network. Additional
information about processes and devices improve the ac-
curacy of the model and subsequent analysis results.

In contrast to other approaches for modeling fieldbus
systems ([17], [3], [4]) we are able to extract all informa-
tion from a database existing anyway. Therewith, no ad-
ditional effort for model description and parameterization
is neccessary. Subsequently, the performance evaluation
with analytic methods [1] is done.

Further work will be on testing with real networks. We
also want to develop a module which automatically con-
figures the process behavior according to predetermined
scenarios.

6. Acknowledgment

The project the present report is based on was pro-
moted by the Federal Ministry of Education and Research
under the registration number 13N8177. The authors bear
all the responsibility for contents.

References

[1] P. Buchholz. Analytical analysis of access-schemes of
the CSMA-type. In Proceedings of the 5th International
Workshop on Factory Communication Systems (WFCS
2004), Vienna, Austria, September 2004.

[2] EIB Association, 2004. www.eiba.com.
[3] E. Hintze. Modellierung und Simulation heterogener, in-

dustrieller Kommunikationsnetzwerke. In Entwurf kom-
plexer Automatisierungssysteme - EKA 2003, pages 175–
193, Braunschweig, Juni 2003.

[4] E. Hintze and P. Kucera. Simulation of RFieldbus Net-
works. In Proceedings of the 5th IFAC International Con-
ference on Fielbus Systems and Their Applications (FeT
2003), pages 115–122, Aveiro, Portugal, July 2003.

[5] K. Kabitzsch, D. Dietrich, and G. Pratl, editors. LonWorks
- Gewerkeübergreifende Systeme. VDE Verlag GmbH,
Berlin, 2002.

[6] K. Kabitzsch and M. Neugebauer, editors. Netzwerke in
der Gebäudeautomation - Modellierung, Voraussage, Pla-
nung, Dresden, 2003. ISBN 3-86005-409-0.

[7] K. Kant. Introduction to computer system performance
evaluation. McGraw-Hill, New York [et al.], 1992.

[8] L. Kleinrock. Queueing Systems, vol I & II. A Wiley-
Interscience publication. Wiley, New York [et al.], 1975.

[9] LON Nutzer Organisation e. V. Datenbank der LON
Nutzer Organisation e. V. visited February 2004,
www.lno-db.de.

[10] LonMark Interoperability Association, 2004.
www.lonmark.org.

[11] D. Loy, D. Dietrich, and H. Schweinzer, editors. Open
Control Networks. Kluwer Academic Publishers, Boston,
Dordrecht, London, 2001.

[12] M. Neugebauer and K. Kabitzsch. A New Protocol for
a Low Power Sensor Network. In H. Hassanein, R. L.
Oliver, G. G. R. III, and L. F. Wilson, editors, Proceed-
ings of the 23rd IEEE International Performance, Com-
puting and Communications Conference (IPCCC 2004),
pages 393–399, Phoenix, Arizona, April 2004. IEEE.

[13] M. Neugebauer, J. Plönnigs, and K. Kabitzsch. Prediction
of Network Load in Building Automation. In 5th IFAC In-
ternational Conference on Fielbus Systems and Their Ap-
plications (FeT 2003), Aveiro, Portugal, 2003.

[14] J. Plönnigs, M. Neugebauer, and K. Kabitzsch. A Traffic
Model for Networked Devices in the Building Automa-
tion. In Proceedings of the 5th IEEE International Work-
shop on Factory Communication Systems (WFCS 2004),
Vienna, Sept. 2004. to appear.

[15] P. Schwarz and U. Donath. Simulation-based Performance
Analysis of Distributed Systems. In International Work-
shop Parallel and Distributed Real-Time Systems, pages
244–249, Geneva, Switzerland, 1997.

[16] Stefan Rüping and Ralf Hunstock and Uwe Gunreben.
Simulation of LonWorks Systems. In Proc. of the
LonUsers International Fall 97 Conference, 1997.

[17] T. Tomura, K. Uehiro, S. Kanai, and S. Yamamoto. De-
veloping Simulation Models of Open Distributed Control
System by Using Object-Oriented Structual and Behav-
ioral Patterns. In Fourth IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing, pages
428–437, Magdeburg, Germany, May 2001.

[18] WAREMA Renkhoff GmbH. WAREMA LonWorks-
Steuerungen. Marktheidenfeld, 2003.

[19] M. Woodside, C. Hrischuk, B. Selic, and S. Bayarov. A
wideband approach to integrating performance prediction
into a software design environment. In Proceedings of
the First International Workshop on Software and Perfor-
mance, pages 31–41, New York, NY, USA, 1998. ACM
Press.

6


