
Creating Self-Installed Devices

Simple Installation for Simple Networks

Rich Blomseth & Bernd Gauweiler, Echelon

Agenda

• Part 1
– Self-installation definition
– Applications for self-installation
– NodeBuilder® 3.1 and Echelon support for self-installation

• Part 2
– A practical example

Self-installation Definition

• Network configuration data
– The following network address components contained

within a device: device domain IDs, device subnet IDs,
device node IDs, device group IDs, network variable
selectors, aliases, and NV/message destination
addresses

• Self-installed device
– A device that modifies its network configuration data, but

does not modify the network configuration data of other
devices

Applications for Self-installation

• Networks that do not require complex interactions between
devices
– A network view is not required to create connections
– Devices do not require knowledge of other devices
– Typically single vendor

• Example: a lighting system with lamp and switch modules
• With proper design, a self-installed device can also be used

in a network tool-installed network
– Increases the market for the self-installed device

NodeBuilder 3.1 and Echelon Support

• NodeBuilder 3.1 support
– update_clone_domain(),

update_address(), update_nv(), and
update_alias() functions

– SCPTnwrkCnfg configuration property
type

– nciNetConfig member of
SFPTnodeObject functional profile

• New Echelon support policy for self-
installation
– www.echelon.com/support/selfinstall.htm

Creating Self-Installed Devices
Part 2

A Practical Solution

Bernd Gauweiler, Echelon

Three Commandments

You shall communicate using...

I. ... a configured clone domain configuration

II. ... group or broadcast addressing

III. ... network variables for data exchange

(avoids requirement for unique addresses)

(works on local knowledge alone)

(allows use of self-installed devices in managed network.
Implement SCPTnwrkCnfg!)

Know Thy Self!

• Local knowledge is required

• Requiring local knowledge alone is essential

Know Thy User!

Self-Installation aims at technology-unaware user:

• Works out-of-the box

• No additional hardware or software required

• Simple and familiar programming model

Programming Model

• Devices fall into categories
lighting devices, heating devices, etc.

• Within each category, devices form parties
stairwell lighting party, lounge lighting party, etc.

• Devices belong to a house
Devices shall not interfere with each other across property
boundaries without prior consent

Let’s Talk LonTalk®

• Each house uses its own domain

• Each category of devices uses its own group

• Each party uses its own selector

• Alternative mapping possible

Neuron Firmware Tables

party
party

...

0
1

n

NV cnfg

category

...

0
1

m

address

2

house0
1

domain

nviValueFb nvoValue

closedLoopSensor

(nviValueFb)
(nvoValue)

Trade-Offs and Limits

void UpdateCategoryNumber(unsigned uNumber) {
address_struct aAddr;

aAddr = *access_address(ADDRESS_INDEX);

aAddr.gp.type = 1;
aAddr.gp.size = 0; // open group
aAddr.gp.domain = DOMAIN_INDEX;
aAddr.gp.member = 0;
aAddr.gp.rpt_timer = REPEAT_TIMER;
aAddr.gp.retry = REPEAT_COUNT;
aAddr.gp.rcv_timer = RECEIVE_TIMER;
aAddr.gp.tx_timer = TRANSMIT_TIMER;
aAddr.gp.group = uNumber;

update_address(& aAddr, ADDRESS_INDEX);

}

• Accept
limitation

• Design for
worst-case

• Keep it
simple

Basic Scenario

Use dials to determine party and house numbers

when (io_changes(ioDial1)) {

UpdateHouseNumber(input_value);
}

when (io_changes(ioDial2)) {
UpdatePartyNumber(myFb::nvoValue::global_index,
input_value);

}

Local Self-Installation

Standard Neuron C Routines for local installation:
void UpdateHouseNumber(unsigned uNumber) {

domain_struct aDomain;
aDomain = *access_domain(DOMAIN_INDEX);
aDomain.id[0] = uNumber;
....
update_clone_domain(&aDomain, DOMAIN_INDEX);

}

void UpdatePartyNumber(unsigned uNvIdx, unsigned uParty) {
nv_struct aNvCnfg;

aNvCnfg = *access_nv(uNvIdx);
aNvCnfg.nv_selector_lo = uParty;
....
update_nv(&aNvCnfg, uNvIdx);

}

A Useful Hint for NodeBuilder Developers

Conditional definition of DOMAIN_INDEX allows for
development and debugging within the NodeBuilder
and LonMaker tools:

#ifdef _DEBUG
define DOMAIN_INDEX 1
#else
define DOMAIN_INDEX 0
#endif // _DEBUG

Smart Scenario

Basic Scenario requires user to manage dials
Smart scenario for simple pushbutton programming:

1. Press button on device to start programming (host)
2. Host will automatically find unused party number (=selector)
3. Host invites other devices to party
4. Press button on desired invited devices (=guests)
5. Press button on host to confirm party invitation

Party Management

Devices use simple application message protocol to
find unused party number, to exchange invitations, etc.

Application message hides proprietary management protocol from
integrator

Use signed application messages

Example implementation uses UFPTnodeManager

Devices May Become Guests

normal

invited

accepted

join party

receive
invitation

accept receive
confirmation

receive
cancellation

Devices implement simple state machine to join parties:

Devices May Become Hosts

Devices implement similar state
machine to become hosts

All devices implement both host
and guest machines

normal

find free party

send
invitations

await
confirmation

start
programming

receive
acceptance

join party

send
confirmation

send
cancellation

user cancels user confirms

Domain Identifiers

• Use 3-byte domain identifiers
• Use domain[0] for production releases
• Use domain[1] for debugging versions

• Automatic domain look-up possible:
+ Device could query and join an existing domain, move

between domains, create new domains
- Development effort with unknown benefit

What’s Next?

Visit the Echelon booth to see working smart self-installed devices.

Watch www.echelon.com/NodeBuilder for updates on a
new technical paper, discussing these issues in much more detail.

Thank you.

