
Fire Safety Alarm Transmission in Networked Building Automation Systems

Georg Neugschwandtner, Wolfgang Kastner, Bernhard Erb
Automation Systems Group, TU Vienna – {gn, k, berb}@auto.tuwien.ac.at

Abstract

Comparing the structure of a modern fire alarm system
with the one of a networked Building Automation System
(BAS) reveals important common characteristics. Both
systems have nodes distributed in the building, communi-
cating over an electric wire. They typically use the same
cable for both communication and power supply of nodes,
and both can be implemented using a similar network
structure. This paper presents the work-in-progress re-
garding the implementation of safety-related functionality
using the infrastructure of a networked BAS. It shows how
the link layers of KNX/EIB and LonWorks can be adapted
in a downward compatible way to ensure that safety re-
lated messages have priority over any other BAS traffic.
In addition, a system-neutral protocol for the robust and
timely transmission of fire alarm messages is proposed.

1 Introduction

Building Automation Systems (BAS) are concerned
with the automatic control of building services, key areas
being Heating, Ventilation and Air Conditioning (HVAC),
lighting and shading. In common practice, BAS do
not provide safety related services. The most relevant
safety application in buildings concerns fire detection and
alarms. These systems are typically independent and
stand-alone. Data exchange (e.g., to realise fume extrac-
tion in case of fire) is done via gateways. However, only
shared use of resources allows to take advantage of syner-
gies. This concerns both hardware, such as wires, sensors,
actuators and controllers, and software, like tools for con-
figuration and management. For this reason, a tight inte-
gration of such systems into the very fabric of networked
BAS is desirable. But safety related systems, in particular
those concerned with life safety, impose special require-
ments on the underlying communication system. Thus, it
has to be ensured that these requirements are met.

For fire alarm systems, they are laid down in formal
standards. Therefore, key points of relevant standards are
outlined in Section 2. Existing alarm system implementa-
tions are not available for comparative analysis as relevant
information is not publicly available in sufficient detail.

Next, we show how an integration of fire alarm sys-
tems into popular networked BAS (i.e., KNX/EIB and
LonWorks) can be achieved. As a first step, it is shown

how safe communication can share the BAS network stack
up to the link layer. To be able to consider safety traffic
as independent from BAS traffic as possible, safety mes-
sages are given absolute priority. This is done by adapt-
ing the medium access control protocols of EIB/KNX TP1
(Twisted Pair 1) and LonTalk (e.g., applicable to the FT-
10 free topology channel) by design extension and/or ap-
propriate configuration. Further, a system independent,
robust transport layer protocol is introduced. It provides
additional fault detection and correction capability, which
we believe to be useful in this context.

The present paper is independent of the EU collective
research project “SafetyLon” which was established in
2005. The objective of this project is to provide a safety
extension to LonWorks. No publications appear to have
been made to date, however.

2 Standards for fire alarm systems

A fire alarm system (FAS) as defined in [2] is a sys-
tem with a single central fire alarm monitoring station
(CFAMS) and a number of fire detectors or manual fire
indicators communicating over transmission paths. In
the following, both automatic detectors and manual in-
dicators shall be cumulatively referred to as sensors. A
CFAMS and its associated sensors communicate in a mas-
ter slave relationship. The CFAMS acts as master, super-
vising the communication and responding to significant
state changes with appropriate actions. It has to be guar-
anteed that no more than 32 fire detectors are affected by
a single short circuit or cable break.

Interconnection patterns between FAS are specified in
[1]. In this standard, a networked FAS is defined as a
number of FAS interconnected in a peer-to-peer manner
without a central point of control. In this case, every par-
ticipating CFAMS is assigned the task of communication
surveillance. In contrast, a hierarchical FAS combines
multiple FAS under the control of a master CFAMS. This
master CFAMS is responsible for the communication be-
tween all participating CFAMS. Every FAS however re-
mains self-contained regarding fire detection and alarm
signalisation.

FAS as defined in [3] are allowed to share transmission
paths and devices with other systems. However, the ab-
sence of feedback must be guaranteed. This implies that
on a shared transmission path messages from the FAS are
assigned the highest priority. This way messages from

1-4244-0379-0/06/$20.00 ©2006 IEEE.

C
FA

M
S

1st layer
Master CFAMS

2nd layer Master CFAMS

CFAMS CFAMS
C

FA
M

S

1st layer
Master CFAMS

CFAMS

Figure 1. Topological model

other systems are not able to affect the FAS communi-
cation. Additionally, fire alarm messages have to be as-
signed the highest priority within the FAS. This implies
that failure messages, for example, must be assigned a
lower priority than fire alarm messages.

Requirements on the response times of fire alarm sys-
tems are again defined in [1]. Any fire alarm must be
signalised within 10 seconds at the local CFAMS; within
20 seconds at any other CFAMS in a networked FAS; or
equally within 20 seconds at the master CFAMS in a hi-
erarchical FAS. Failures (e.g., sensor failure) must be re-
ported within 100 seconds locally and within 120 seconds
remotely.

3 General model

The hierarchical FAS pattern appears most appropri-
ate as the basis for a general model of implementing FAS
on networked BAS. In our model, every FAS is associated
with a single KNX/EIB line (or LonTalk subnet). As a first
approach, only the lowest hierarchy layer contains sen-
sors. For simplicity, master CFAMS just collect data from
multiple slave CFAMS, but do not have sensors attached
on their line/subnet. CFAMS functionality may, but need
not be implemented by KNX/EIB or LonTalk routers.

Second, since at most 32 sensors must be affected
by a transmission channel failure, the number of sensors
in every subline/subnet shall be limited to 32. This al-
lows maintaining the free topology BAS engineers and in-
stallers are used to.

In case of a short circuit or a permanently faulty node
blocking all communication on the subline/subnet, all 32
sensors will fail. The fault however remains contained to
one single CFAMS. Although this will cause the entire
loss of automatic fire detection for a certain part (e.g., one
floor) of the building, the situation is not different with
traditional FAS. Such a failure has to be detected and sig-
nalled in due time, however. If it happens on a higher hier-
archy level, the CFAMS remain operational.Only central
monitoring and alarm propagation will be affected.

KNX/EIB allows 225 lines at the lowest hierarchy
layer. LonTalk allows 255 subnets per domain. This trans-
lates to a maximum of 7200 and 8160 sensors, respec-
tively. This appears sufficient even for large installations.
In addition, the remaining address space is still open for
legacy nodes.

Finally, it shall be defined that FAS devices (sensors as
well as CFAMS) can be in one of the following states:
• Ready: The device is ready to detect and report a fire

alarm condition.
• Alarm: The device has detected a fire.
• Failure: The device has detected an internal error

(communication error, physical sensor failure, . . .).
• Init: The device is establishing communication with

its associated CFAMS (or sensors, respectively).
The general idea is that the master collects status in-

formation from the slaves. It then evaluates this informa-
tion and decides upon the system state, taking appropriate
measures. Cable breaks and silent sensor failures have to
be detected automatically.

4 Adapting the KNX/EIB Link Layer

Medium access on EIB/KNX TP1 is controlled using
carrier sense multiple access (CSMA) with bit-wise arbi-
tration on message priority and device address. Four pri-
ority levels (low, normal, high, and system) are provided.
Within these levels, messages repeated due to a previously
failed transmission are further prioritised.

In addition to bitwise arbitration, the required idle time
between messages is also modified. Non-repeated mes-
sages of high or low priority (i.e., those belonging to the
“standard” priority class as shown in Fig. 2) are subject to
an additional waiting period of 3 bit times in addition to
the minimum of 50 bit times.

The highest priority level (system) is used by the trans-
port layer for the exchange of control messages during re-
liable connections. This is an unsuitable basis for the inte-
gration of FAS, since the priority of safety-related traffic
cannot be guaranteed. Therefore, the medium access con-
trol (MAC) mechanism needs to be extended to provide
an additional priority class. For this reason, we allow to
start the transmission of safety messages already after 47
bit times. “High” (i.e., messages with high or system pri-
ority, and any repeated message) and “standard” priority
classes follow as usual in standard KNX/EIB.

To ensure that legacy devices which are unaware of this
extension lose arbitration, safety nodes starting a trans-
mission shall fill the safety and high priority class time
windows with dominant states.

Within the safety related communication, the priority
of alarm messages over others (e.g., failure notifications or
connection establishment) must be ensured. Also, sensors
need to obtain relative priorities for bus access. This can
again be provided by bitwise arbitration. Also, routers
need to understand the priority extension.

5 Integration in LonWorks

For the TP medium, LonTalk uses a CSMA variant. At
the start of the arbitration phase, before the contention pe-
riod, priority time slots are available for urgent messages.
128 different priorities are available for each subnet. The

shortened minimum idle time
47 bit times

0 47 50 53 55

safety
priority
class

high
priority
class

standard
priority
class

minimum idle time
50 bit times

0 50 53 55

Standard bus idle time

Proposed modification

bit times

bit times

high
priority
class

standard
priority
class

Figure 2. EIB/KNX TP1 MAC adaptation

actual number of priority slots (i.e., available levels) is de-
termined in the engineering phase.

In contrast to KNX/EIB, priority levels are assigned to
nodes instead of messages. This mechanism can be used
for the unconditional prioritization of safety nodes over
others in a straightforward manner. Within a subnet at
the lowest hierarchy layer, the highest priority is assigned
to the CFAMS. The 32 subsequent priority levels are as-
signed to the sensors.

Special attention must be directed to routing. Every
LonTalk router in LonWorks is associated two different
priority levels, one for each transmission path. Every mes-
sage contains a (Boolean) priority flag. When a message
with this flag set passes a router, it is transmitted with the
priority level of the outgoing interface.

In a hierarchical FAS implemented on LonTalk, the
hierarchy-upward interface of the router needs to be as-
signed one of the 32 highest priority levels. The mas-
ter CFAMS is assigned the highest priority in the higher-
ranking subnet. This pattern corresponds to the assign-
ment of priority levels to sensors and (slave) CFAMS on
the lowest hierarchy layer.

The hierarchy-downward interface of the router is as-
signed the lowest priority of safety nodes within a subnet.
In that way it is guaranteed that the propagation of alarm
states from the sensors to the CFAMS (or from slave to
master CFAMS, respectively) takes prevalence over the
downward propagation of state information from other fire
alarm systems. A configuration example is given in Fig. 3.

As a first important restriction of this approach, the use
of prioritized messages is allowed for safety-related traf-
fic only. Otherwise, hierarchy-upward prioritised traffic
would be able to starve the communication between slave
and master CFAMS on the higher-ranking subnet. As
another, assigning relative priorities within safety-related
traffic is not possible using this approach. For example, a
sensor constantly reporting a non-critical error condition
could starve fire alarm messages from a sensor with a rel-
atively lower priority level.

These problems could be addressed by assigning multi-
ple node addresses to every safety node, which then would

Router

Router
P3Master CFAMS

Priority 1

Node 1
P 2

Node 32
P 33

Node 2
P 3

Node 1
P 2

Node 3
P 4

Node 4
P 5 …..

CFAMS
Priority 1

P2

P34

CFAMS
Priority 1

P34

Figure 3. Priority assignment in LonTalk

2nd ack. received

event notification

retry limit reached /
node status := „failure“

node status change /
send status change

message

appropriate time interval /
send heart beat message

(status + quiz)

heart beating

robust transport protocol slave

1st ack. received or
timeout reached /
resend message

wait for acknowledge

idle

round initialised

round init
frame

received

starts new notification
cycle, retry until next
successful heart
beating round

Figure 4. Slave protocol

allow assigning separate priorities to different types of
messages. Also, routers could be extended to modify the
priority of outgoing messages depending on their priority
level on the incoming side.

6 Robust protocol

The protocol presented in the following is designed for
the exchange of status information between sensors and
CFAMS. It can be implemented on top of the adapted link
layers presented in the previous two sections. However,
the sole requirement on the underlying channel is that one
node can be assigned a higher priority for transmission
than any other. Otherwise, it is system independent. It
also makes no assumptions about the reliability of the un-
derlying channel. It can deal with transient communica-
tion errors, silent sensor failures and cable breaks.

The protocol is inspired by the “two message depen-
dency algorithm” found in [2]. It basically rests upon
an event driven approach enriched by a heartbeating fea-
ture. The general idea is to enhance the error detection ca-
pability by transmitting every status change event twice.

event notification

round
complete

[no irregularities] /
system status :=

„ready“

heart beating

H

heart beat
message

received out of
time slot /

system status :=
„failure“

robust transport protocol master

unconfirmed notification
status change

message
received from
slave n / send

1st ack

copy of message
received / send 2nd

ack and accept status
change for n

timeout / retain
previous status

for n

at power-up / system status := „init“

idle

round in progress

send round
init frame

"alarm" status of any
slave takes prece-
dence for determining
system state

[any slave is silent or
in state „init“ for too
long or shows status

„failure“] / system
status := „failure“

Figure 5. Master protocol

The master only accepts a state change indication if cor-
responding messages are successfully delivered.

Heartbeating is included to allow a periodic liveness
check of all slaves, adding a time-triggered aspect. Since
the propagation of slave status changes within an adequate
amount of time is ensured by the event-driven part of the
protocol, the heartbeat interval can be left at the maximum
delay allowable to leave the silent failure of a slave go un-
noticed. This reduces the bandwidth consumption signifi-
cantly in comparison to a pure time-triggered approach.

Details of the slave and master protocols are shown
in Fig. 4 and 5, respectively. Messages are uniquely as-
signed to a particular notification cycle by including a se-
quence counter or toggle bit. This allows the master to ac-
cept a status change after any two repetitions of the same
slave message, regardless of whether they were actually
sent in sequence by the slave. Such a situation can occur
when acknowledgements get lost. On the other hand, the
master needs to send two distinctive acknowledgements,
since they trigger different activities in the slave. The first
merely prompts the slave to send its message again, while
the second one signals that the state change was accepted
and no further repetitions are necessary.

Until a slave receives this second acknowledgement,
it continuously retransmits its status change report with a
fixed frequency. Yet, this is done for a limited number
of times only before it changes its node status to “failure”.
The slave then tries again to propagate this condition to the

master via event notification. However, it only tries until
the next heartbeating round to reduce the risk of uselessly
monopolising the network. After the heartbeating round,
the failure state should have been propagated to the master
unless the network is entirely broken.

Heartbeating is organised in rounds. The master initial-
izes a heart beat round by sending a round init frame. Ev-
ery slave then responds in its previously configured time
slot. In addition to reporting their node status, slaves are
required to solve an easy, but non-trivial problem (e.g.,
multiplication of two integers). This is known as a quiz
and provides additional confidence that a node is operat-
ing properly.

In case the master finds a slave to be in alarm state (re-
gardless of whether by event notification or by a heart beat
report), it also enters the alarm state. If no slave is in alarm
state, the master will reflect the presence of any node fail-
ure status in the system status. If everything appears to be
OK, it still should check upon nodes that are silent or in
the init state. This is acceptable during normal operation
(maybe a watchdog expired or a sensor is performing a
periodic self-test), but nodes remaining excessively long
in such states probably indicate a problem.

The master is assigned the highest priority for trans-
mission. Since slaves stop event notification once they
receive a round init frame and the heartbeating round in-
cludes status exchange, fire alarm reports cannot be in-
finitely suppressed.

7 Conclusion

The present paper discussed the integration of fire
alarm applications into networked BAS. Backward com-
patible approaches for ensuring absence of feedback at the
MAC level for KNX/EIB and LonTalk TP and a system
neutral robust protocol were presented. Our next steps
will include a first implementation for EIB/KNX to de-
termine compatibility issues and how easily the extension
can be integrated. In addition, we will evaluate an entirely
time-triggered alternative for the robust transport proto-
col. Further steps will need to address sharing of the node
resources while maintaining absence of feedback also in
this respect. Another interesting topic would be to com-
pare the dependability/reliability of our solution to a tra-
ditional FAS.

References

[1] DIN EN 54-13, Fire detection and fire alarm systems
- Part 13: Compatibility assessment of system compo-
nents, 2005.

[2] DIN EN 54-2, Fire detection and fire alarm systems -
Part 2: Control and indicating equipment, 1997.

[3] DIN VDE 833-1, Gefahrenmeldeanlagen für Brand,
Einbruch und Überfall - Teil 1: Allgemeine Festle-
gung, German Std., 2003.

