
Experience with LonWorks as a Fieldbus for the Light Source ANKA

B. Jeram, M. Juras, G. Mavric, M. Plesko, M. Smolej
J. Stefan Institute, P.O. Box 3000, 1001 Ljubljana, Slovenia

e-mail: mark.plesko@ijs.si

Abstract

 ANKA[1] is a 2.5 GeV synchrotron radiation light
source being built in Karlsruhe, Germany. The control
system of ANKA is based on the standard model with a
few modifications[2]: Instead of employing VME, we use a
field bus network with intelligent nodes to connect the
individual devices directly to PCs. Those can serve as
consoles or as the middle layer of the control system.
 Since a light source is a relatively static machine, there
is no need for hard real-time control. Therefore we have
decided to opt for the LonWorks[3] fieldbus, because it
offers a complete network system in hardware and
software in a single micro-controller (the Neuron chip)
with all the necessary development and network
management tools. LonWorks already implement layers 1-
6 of the ISO/OSI model and thus transparently connect
controlled devices and control room consoles without any
need for network programming.
 In this paper we report of experiences with LonWorks
on a working prototype consisting of 10 nodes, each
equipped with a Neuron chip.

1 Introduction

 Exploiting the fact that over 30 drivers for different I/O
models already exist in the firmware of the Neuron chip,
e.g. digital, byte, serial, microwire, counter/timer, etc., we
have designed and built in short time several modular I/O
boards that connect to the Neuron chip:
• 8-channel 12-bit ADC
• 8 digital in
• 8 digital out
• RS-232 interface
and interfaced a Neuron chip to a commercial 16-bit
DAC/ADC board.
 The prototype implements the following functions in the
nodes:
• complete magnet power supply control including state

machine and alarms
• synchronous ramping of several power supplies where

their current is increased bit-by-bit in 1 ms steps
• knobs: fine tuning with physical and virtual knobs

through the LonWorks network generating over 25
actions/display pairs per second

• Vacuum pump, gauge and valve control and interlock
• beam position monitor acquisition and averaging
 Due to the OLE and DLL interfaces existing for
LonWorks, we are able to access the variables and
structures used in the nodes directly at the PC console.
Several applications to control and monitor the nodes were

written using rapid application development tools like
Visual Basic and Delphi. Through OLE, controlled
variables can be accessed easily even from Excel. This
makes local control of devices very easy, as any laptop PC
can be just plugged to the LonWorks network as the need
arises.
 However, an accelerator control system should be
reasonably scalable, therefore we use the OLE/DLL
interface to write device servers [4] on the middle layer of
the 3-layer standard model of ANKA’s control system. As
opposed to most control systems which use VME and a
real-time operating system, our device servers run on PCs
under Windows NT.

2 The elements of LonWorks

 There are a number of control network technologies
available today. None of them has emerged as a leading
standard yet, which makes the choice very difficult. Many
promise interoperability and plug-and-play in the close
future. However, such promises have been given in the
past ten years and never delivered. A notably exception is
the LonWorks technology, developed and marketed by
Echelon Corporation, which delivers both interoperability
and plug-and-play today. There are currently around 2600
companies developing LonWorks into their products. With
over 2.5 million installed nodes world-wide, LonWorks
have one of the largest installed bases.
 Several documents describing the basics of LonWorks
technology are easily accessible over the World Wide
Web[5]. Here, just a brief overview can be given.
LonWorks comprises four elements:

2.1 LonTalk network protocol

 LonTalk implements layers 1-6 of the ISO/OSI model
and thus hides all details of the field bus protocol.
Different network speeds and media are supported, among
others also twisted pair wires. The protocol supports
communication based on request/response or events, direct
node-to-node communication, practically unlimited
number of nodes, unicast, multicast and broadcast,
message acknowledgement, authentication and message
priorities.
 Normally, network communication is done through
network variables. A network variable is a data object that
can be accessed by several nodes transparently through the
network. Whenever the application program running on a
given node writes into one of its output network variables,
the new value is propagated across the network to all the
nodes connected to that network variable.

2.2 The neuron chip

 Each LonWorks node is controlled by the Neuron chip.
It contains three microprocessors, LonTalk firmware and
I/O channels all in one VLSI chip at a price of $5. The
Neuron chip can be seen as an 8-bit micro controller with
additional processors that handle network communications
and I/O. Over 30 drivers for different I/O models exist in
firmware, like digital, byte, serial, microwire, coun-
ter/timer, etc.. There are several versions of the Neuron
chip available, the most powerful running at 10 MHz,
allowing up to 64 kbyte external RAM for the firmware
(16kbytes), application programs and data.

2.3 Neuron C

 The Neuron chip applications are programmed with the
high level language Neuron C. Being a subset of ANSI C,
it adds several features that support control and commu-
nications such that assembler programming is necessary
only for time critical applications. With Neuron C one can
attach variables directly to I/O pins, use network variables
and communicate through the I/O pins with high level
protocols. Events are handled naturally with the when
clause. Quasi real-time response is provided with the use
of built-in timers.

2.4 The development environment and network manage-
ment tools

 Echelon provides a powerful cross-development and
debugging environment for LonWorks. Hosted on a PC it
allows the development and step-by-step debugging of
single and multiple node applications as well as the
communication between them. Complete network
manage-ment functions are provided that install and
configure nodes and monitor network activity down to
each single packet. Network management with PCs creates
both a dynamic database for network variable linking and
a disk-based database for node and network link related
data. Program downloading and invocation over the
network is also possible.
 A library of application programming interfaces (API)
for PCs for network programming, management and
control is also available. With the API library, Windows-
based control applications can be built, exploiting both the
convenience of LonWorks technology and the power of
graphical user interfaces.
 The whole picture is rounded up with excellent
documentation and a long list of freely available tech notes
and program examples.

2.5 Limits of LonWorks

 The first target markets for LonWorks were building
automation and large scale manufacturing facilities. For
this reason, network throughput speed and Neuron
performance have been sacrificed for long distance
networking, reliability, security and low cost. Those
design decisions show up as poor performances of the
Neuron chip. Note that - as opposed to CAN or Profibus
measurements, where network controller speeds are
published - the following figures denote the time it takes
that a message from one application reaches and is

processed by another applications.
• an unacknowledged packet takes 3-7 ms;
• an acknowledged round-trip takes 15 ms;
• a when clause (event handling) takes 1 ms;
• a Neuron chip can transmit a maximal number of 100

acknowledged packets per second (a packet size can
be up to 226 bytes).

LonWorks are thus not adequate for
• CPU-intensive tasks
• fast transfer of large data sizes
• sub-millisecond real-time operations
 The network protocol, running at 1.25 Mbit/s, is more
powerful, allowing a sustained rate of up to 600-800
packets per second, depending on the packet size.

3 The prototype built with LonWorks

 First some tests were run at the storage ring ELSA of
the University of Bonn, mainly to check the robustness of
the protocol against noise but also to see how fast simple
electronics and programs can be built around the Neuron
chip. Based on those results, a functioning prototype has
been built in order to see where the real problems lie. The
discussion on the results and achievements follows. See
figure 1 for the layout of the prototype.

main PS
Neuron

auxillary
Neuron

BESSY card
ADA-16

main PS
Neuron

auxillary
Neuron

BESSY card
ADA-16

ramp
Neuron

8 chan.
ADC

8 chan.
ADC

BPM
Neuron

clock

clock

8 chan.
ADC

8 digital
inputs

Vacuum
Neuron

8 digital
outputs

PS
Neuron

µC with
RS 232

to PC

micro-wire

mux-bus

micro-wire

mux-bus

parallel I/O
Danfysik
black box

BESSY
corrector

PS

BESSY
corrector

PS

8 beam
position
monitors

(hor., vert.)

7 ion pumps,

1 Penning
gauge,

1 gate valve

Figure 1: the layout of the fieldbus and I/O hardware of the prototype

3.1 Noise immunity

 A small network was set up, such that a node was on a
twisted pair cable about 30 m away from the others.
Different situations were studied (see table 1), next to
noisiest source in the ring (a kicker), under heavy network
load and under unrealistically bad conditions (the network
cable was hung around a 50 kV supply and looped in front
a klystron). Although errors on the network such as
collisions, timeouts and CRC errors were seen, not a
single packet got lost, as the protocol automatically tries to

re-send packets and compose messages.

3.2 The I/O combo

 Originally planned as a multipurpose ADC/digital I/O
board, this combo now consists of a backplane with up to 9
slots – one for the Neuron board and 8 for a mixture of the
following half length 3U sized cards:
• an 8 channel digital TTL input
• an 8 channel digital TTL output
• an 8 channel 12-bit ADC
 The Neuron board is a motherboard that takes
“piggyback” the 1.25 Mbit/s transceiver and the LTM-10
module[6]. This module is a small board bought from
Echelon that contains the Neuron chip, 32k RAM and 32k
flash memory. All Neuron boards in the prototype are of
this kind.
 All boards are protected through optocouplers. Here, the
serial microwire (or SPI) interface is made use of. The
Neuron already supports the SPI protocol, so we just had
to buy an ADC which supports this protocol.
 The digital I/O are designed such that 8 signals together
form one byte - the unit of communication on the
microwire. The microwire interface allows addressing of
up to 8 devices, therefore we can mix an arbitrary number
of ADCs, digital I/Os and DACs - the DAC board is not
part of the prototype and will be done later. All those
boards together have been designed and built in the
shortest time. The prototype contained four I/O combos: 3
vacuum controller (with three cards, one of each type, to
control 7 pumps, one gate valve and read out one Penning
gauge) and one BPM controller (two ADC cards to read
the horizontal and vertical position of 8 beam position
monitors).
 All software was written in Neuron C. The code for the
vacuum is quite straightforward, even with the slow
interlock scheme that runs in parallel to the read and set
operations. The BPM code includes averaging of 32
consecutive readings. In order to send the averaged values
once per second, a few tricks were necessary, as it takes
300-400 ms just for the averaging of 12-bit values. The 16
(8 BPM’s times two planes) updates are sent in one
message in order to save bandwidth and network address
allocations. This is because a Neuron chip can send up to
15 different variables in an effective way. More variables
take significantly more time - but several values can be
composed into one message and sent as one variable.

3.3 Communicating with LonWorks from within Windows
applications

 The library of the LonWorks network services (LNS)
can be incorporated into Windows software just by
dragging their OLE control objects to the visual
development form, e.g. in the Visual Basic integrated
development environment, or in Visual C++. The simplest
LNS functions are used to access and display network
variables from within Excel or Visual Basic. A more
power application is written in C++. This application is
actually a CORBA[7] server that exports objects into the

Internet, such that an application anywhere in the Internet
can access certain network variables of a given device [4].
 Although a powerful aspect of the LNS, it took 1-2
months to get it running properly. The main reason is lack
of proper documentation and this is the main criticism we
had with LonWorks. There is enough documentation
including tutorials to establish simple tasks, but for certain
features there exists only a definition of the API.
Fortunately, customer support is quite helpful, even in
Europe.

3.4 Control of power supplies

 The prototype used the same card as BESSY to interface
to a magnet power supply, the ADA-16 [8]. It has a high
precision 16-bit ADC, 16-bit DAC, 8 digital inputs and 8
digital outputs. The card that usually communicates with a
PC through the ISA interface was modified slightly by the
manufacturer to support the muxbus interface instead - an
8-bit asynchronous parallel interface understood by the
Neuron. With the addition of only one PAL, the Neuron
was able to communicate with the ADA card.
 A complete PS control node was created with
sophisticated software that has the following functions:
• it constantly monitors the ADC and DAC settings of

the ADA-16
• if a change occurs, the new values are sent over the

network, but keeping a minimum time between two
consecutive packets in order not to flood the network
with spurious events

• if a maximum time period passes without any event,
the values are sent nevertheless (heartbeat)

• if the values exceed certain limits, alarm messages are
sent

• commands coming from the network (on, off, set, etc.)
are executed and acknowledges sent back

• a state machine is implemented that blocks forbidden
transitions

3.5 Synchronous bit-by-bit ramping

 One of the requirements of the ANKA storage ring is
that the power supplies must be ramped synchronously
within 75 seconds, because the injected beam has not the
full energy. The external synchronisation can come
conveniently through one of the digital inputs of the ADA
card. In order to keep the jitter between two different
power supplies low, the ramp curve should be increased
either by one bit or by none. This translates into the
requirement that one step of the ramp is 1 millisecond.
Under normal functioning, where the Neuron chip has to
cycle through and event loop that cares about network
messages and reads and writes to I/O, such a time scale is
not reachable. Our tests have shown that a step of 12-15
ms would be needed.
 However, if the Neuron is dedicated to ramping only,
then the software can execute in a tight loop without ever
going through the event loop. The ramping curve is loaded
before the ramping starts and is converted into an array of
bits in RAM. Again the slowness of arithmetic operations
(even 16-bit integer) of the Neuron becomes obvious. To

calculate a full ramping curve based on 10 intermediate
points (corresponding to 8k of used RAM) takes close to 6
minutes. However, the curve is loaded only once, stored in
flash memory and is never changed as long as the same
machine physics optics is used.
 In such a set up, two consecutive trigger pulses can be
as close as 0.48 ms. The whole time from the trigger pulse
to the actual set is 0.21 ± 0.05 ms, where half of the time is
spent on the communication with the ADA card. More
important is the jitter between the set of two different
power supplies. That was measured to be 0.06 ± 0.04 ms,
which exceeds the specifications by far.
 In order to allow both controls of the power supply:
normal operation (set/read) and ramping, two Neuron
boards have to be connected to one ADA card (see figure
1). This is possible with the additional help of PAL’s that
take care of the timing of the muxbus interface.

3.6 Knob control

 Old analog control systems allowed to control
parameters smoothly by the use of knobs from the control
room. Most of the current control systems don’t support
this, because of slow network communications. This is
changing now as even the object oriented CORBA takes
only between 2-4 ms to execute a remote method. A
fieldbus alone should definitely be fast enough. For the
operator to get an analog feel, about 25 set/read pairs are
necessary, just like on a TV screen.
 Our measurements on the complete control system[2,4],
which starts with a Java application at the operator console,
communicates through CORBA with the server, which in
turn uses the LNS to communicate over LonWorks with
the Neuron chip, show a turn-around time of 22 to 40 ms,
depending on how much we have optimized the
parameters of the LonTalk protocol for our needs. Table 1
shows measurements of PC to Neuron communications
under different conditions.

Table 1: sustained number of executed power supply
commands per second

command no traffic simulated traffic
read only 46 44
set only 55 42
smooth set only 26 19
both read and set 36 29
read and smooth set 15 10

4 Conclusions

 LonWorks are a commercial fielbus and devicebus
system that can significantly reduce cost and save
development time of a control system. LonWorks simplify
the tedious work of programming the I/O and the network
communication, putting all of its essentials in form of
firmware into the Neuron chip. Our experience have not
shown any severe limitations of the LonWorks and so far
in no case exclude the idea of using them for the control
system.
 Apart from being simple and suited for quick starts,
LonWorks also have the power of a very complex system.

Of course, the details get complicated and then the
learning curve becomes steep. However, these details can
be left to one or two experts while other people still work
with the basic tools. That is ideal for equipment experts
who need to interact with the fieldbus but do not want to
learn the “secrets” of microcontrollers or network
communications.
 Due to the relatively modest requirements of ANKA, we
have found that instead of having relatively dumb devices
and a strong middle layer, we bring intelligence to the
devices and avoid the complexity of VME. This is possible
also because most equipment has already some intelligent
control. It is just necessary to combine them with a proper
field bus.
 In principle, a layer of PCs and the LonWorks fieldbus
is enough to control an accelerator. Such a setup is
acceptable for small systems. It reduces complexity and
price. Large-scale scalability can still be achieved at
moderate cost: connect LonWorks to a simple fall-through
middle layer which can be anything from a TACO device
server to an EPICS VME-based real-time databank. Such a
hybrid solution (VME/LonWorks) might well be suited for
a more demanding accelerator.

Acknowledgements

 We thank the ANKA-team at the Forschungszentrum
Karlsruhe and D. Einfeld and H. Schieler in particular for
creating a pleasant atmosphere of collaboration and for
their hospitality during our visits. One part of the
LonWorks test were performed at the storage ring ELSA of
the University of Bonn at the chair of D. Husmann, whose
help is greatly appreciated. Many important questions
were raised and suggestion given from the collegues in the
TACO collaboration, notably A. Goetz, S. Hunt and W.D.
Klotz. Some hardware for the prototype tests were lent by
BESSY (corrector magnets power supplies and magnets)
and Danfysik (a power supply simulator). We thank them
all.

References

[1] D. Einfeld et al., ANKA - Status of the 2.5 GeV
Synchrotron Light Source at Forschungszentrum
Karlsruhe, Proc. PAC 97, Vancouver 1997.

[2] S. Avsec et al., The Design of the Control System for
ANKA, Proc. PAC 97, Vancouver 1997.

[3] The ‘95-’96 Echelon LonWorks Product Databook,
Echelon Corporation, 1995.

[4] B. Jeram et al., A Control System Based on WWW-
Technologies, this conference.

[5] http://www.mot.com/SPS/MCTG/MDAD/
lon_overview.html,
http://www.jged.com/web_pages/LonPaper.html

[6] LTM-10 User’s Guide, Rev. 2, Echelon Corp., 078-
0132-01B.

[7] S. Hunt, B. Jeram, M. Plesko, The Implementation of
the OO Control System API with CORBA, this
conference. I-ADA16-IO8 Version 1.0
Anwenderhandbuch, EuKontroll, 15.0.4.1996.

