
LonTalk® Protocol

Specification

Version 3.0

@

E C H E L O N

®

C O R P O R A T I O N

078-0125-01A

Echelon, LON, LONWORKS, Neuron, 3150, LonBuilder, LonTalk, and
LonManager are registered trademarks of Echelon Corporation.
LonLink, LonMaker, LonSupport, LonUsers, LONews, LONMARK
and 3120 are trademarks of Echelon Corporation. Other names
may be trademarks of their respective companies.

Other brand and product names are trademarks or registered
trademarks of their respective holders.

ECHELON MAKES AND YOU RECEIVE NO WARRANTIES OR
CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR IN ANY
COMMUNICATION WITH YOU, AND ECHELON SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE.

NO LICENSE IS GRANTED UNDER ANY COPYRIGHT OR PATENT OF
ECHELON CORPORATION EXCEPT PURSUANT TO A WRITTEN
LICENSE AGREEMENT WITH ECHELON CORPORATION.

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of Echelon
Corporation.

Document No. 19550

Printed in the United States of America.
Copyright ©1994 by Echelon Corporation.

Echelon Corporation
4015 Miranda Avenue
Palo Alto, CA 94304, USA

Table of Contents

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 3 of 112

1. INTRODUCTION...7
1.1 Scope And Objectives ..7
1.2 Document Overview...7

2. TERMINOLOGY AND PROTOCOL OVERVIEW..8
2.1 Terminology ..8
2.2 Overview of LonTalk Protocol Layering..9

3. NAMING AND ADDRESSING...12
3.1 Address Types and Formats..12
3.2 Domains..12
3.3 Subnets and Nodes...13
3.4 Groups ..13
3.5 Neuron_ID ..14
3.6 NPDU Addressing ...14
3.7 Address Assignment ..16

4 MAC SUBLAYER...17
4.1 Service Provided...17
4.2 Interface to the Link Layer ...17
4.3 Interface to the Physical Layer...18
4.4 Collision Detection Notification...19
4.5 MPDU Format..20
4.6 Predictive p-persistent CSMA — Overview Description............................20
4.7 Idle Channel Detection ...21
4.8 Randomizing...22
4.9 Backlog Estimation...23
4.10 Optional Priority ..23
4.11 Optional Collision Detection..24
4.12 The Predictive CSMA Algorithm..25
4.13 Timing ...27

5. LINK LAYER..29
5.1 Assumptions...29
5.2 Service Provided...29
5.3 LPDU Format...29
5.4 The Transmit Algorithm ...30
5.5 The Receive Algorithm..30
5.6 Differential Manchester Encoding..31

6. NETWORK LAYER..32
6.1 Assumptions...32
6.2 Service Provided...33
6.3 Service Interface..34
6.4 Internal Structuring of the Network Layer ...35
6.5 NPDU Format ..35
6.6 Address Recognition...36
6.7 Routers..36
6.8 Routing Algorithm...37
6.9 Learning Algorithm — Subnets...38

7. TRANSACTION CONTROL Sublayer..39
7.1 Assumptions...39

Table of Contents

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 4 of 112

7.2 Service Provided... 39
7.3 Service Interface.. 40
7.4 State Variables ... 40
7.5 Transaction Control Algorithm.. 41

8. TRANSPORT LAYER.. 43
8.1 Assumptions .. 43
8.2 Service Provided... 43
8.3 Service Interface.. 43
8.4 TPDU Types and Formats... 44
8.5 Protocol Diagram ... 46
8.6 Transport Protocol State Variables ... 46
8.7 The Send Algorithm.. 47
8.8 The Receive Algorithm.. 49
8.9 RR Pool Size and Configuration Engineering ... 51
8.10 Number of Retries... 51
8.11 Choice of Timers... 53

9. SESSION LAYER ... 54
9.1 Assumptions .. 54
9.2 Service Provided... 54
9.3 Service Interface.. 54
9.4 Internal Structure of the Session Layer .. 55
9.5 SPDU Types and Formats... 56
9.6 Protocol Timing Diagrams.. 58
9.7 State Variables ... 60
9.8 Request-Response Protocol — Client Part... 60
9.9 Request-Response Protocol — Server Part .. 62
9.10 Request-Response Protocol Timers.. 66
9.11 Authentication Protocol... 66
9.12 Encryption Algorithm... 67
9.13 Retries and the Role of the Checksum Function... 68
9.14 Random Number Generation.. 69
9.15 Using Authentication ... 69

10. PRESENTATION/APPLICATION LAYER ... 70
10.1 Assumptions .. 70
10.2 Service Provided... 70
10.3 Service Interface.. 70
10.4 APDU Types and Formats.. 71
10.5 Protocol Diagram ... 72
10.6 Application Protocol State Variables.. 74
10.7 Interactions Between the Offline State and Request - Response................. 77
10.8 Error Notification to the Application Program ... 77

10.8.1 Error Notification for Messages... 77
10.8.2 Error Notification for Network Variables.................................. 77

11. NETWORK MANAGEMENT AND DIAGNOSTICS... 79
11.1 Assumptions .. 79
11.2 Services Provided... 79
11.3 Network Management and Diagnostics Application Structure 80
11.4 Node States.. 80

Table of Contents

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 5 of 112

11.5 Using the Network Management Protocol ...81
11.5.1 Addressing Considerations..81
11.5.2 Making Configuration Changes ..81
11.5.3 Downloading An Application Program.....................................82
11.5.4 Error Handling Conditions...82

11.6 Using Router Network Management Commands...83
11.7 NMPDU Formats and Types...84

11.7.1 Query ID ...85
11.7.2 Respond to Query...86
11.7.3 Update Domain..86
11.7.4 Leave Domain...87
11.7.5 Update Key ..87
11.7.6 Update Address...88
11.7.7 Query Address ...89
11.7.8 Query Network Variable Configuration.....................................89
11.7.9 Update Group Address ...90
11.7.10 Query Domain ..90
11.7.11 Update Network Variable Configuration91
11.7.12 Set Node Mode...91
11.7.13 Read Memory..92
11.7.14 Write Memory...92
11.7.15 Checksum Recalculate ..93
11.7.16 Install ..93
11.7.17 Memory Refresh..94
11.7.18 Query Standard Network Variable Type...................................95
11.7.19 Network Variable Value Fetch ...95
11.7.20 Service Pin Message..96
11.7.21 Network Management Escape Code..96
11.7.22 Router Mode ...97
11.7.23 Router Clear Group or Subnet Table ..97
11.7.24 Router Group or Subnet Table Download..................................98
11.7.25 Router Group Forward ...98
11.7.26 Router Subnet Forward...98
11.7.27 Router Do Not Forward Group..99
11.7.28 Router Do Not Forward Subnet ...99

11.8 DPDU Types and Formats ..100
11.8.1 Query Status...101
11.8.2 Proxy Status ...103
11.8.3 Clear Status ..104
11.8.4 Query Transceiver Status ...104

12. BEHAVIORAL CHARACTERISTICS..106
12.1 Channel Capacity and Throughput..106
12.2 Network Metrics...107
12.3 Transaction Metrics..108
12.4 Boundary Conditions — Power-Up...109
12.5 Boundary Conditions — High Load ..110

13. Appendix A — PDU Summary ...111

Table of Contents

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 6 of 112

This page is intentionally left blank

Introduction

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 7 of 112

 1. INTRODUCTION

1.1 Scope And Objectives

The LonTalk protocol is designed for communication in control networks. These
networks are characterized by short messages (few bytes), very low per node cost,
multiple communications media, low bandwidth, low maintenance, multivendor
equipment, and low support costs.

This document provides the protocol specifications for the LonTalk protocol layers
1.5-7 (the physical layer protocol is not limited to any particular communications
medium, and thus is defined by any number of transceiver designs that can be
connected to the Neuron® Chip). See the Neuron Chip Data Book published by
Motorola and Toshiba for details on the interface requirements of the
communication port. See the LONMARK™ Layers 1-6 Interoperability Guidelines
for specifications on standard transceivers. See the LONMARK™ Application Layer
Interoperability Guidelines for specifications on how to design interoperable
application nodes with the LonTalk Protocol.

1.2 Document Overview

Following the overview in section 2 and the description of addressing in section 3,
the document is structured in a uniform fashion. A chapter is dedicated to each
protocol layer or sublayer. Each chapter starts with a list of assumptions about the
service provided by the underlying layers. For the sake of completeness, a brief
service description is then included, followed by a detailed specification of the
protocol. Most of the algorithms are specified in structured English, using a Pascal-
like notation.

Chapter 11 contains a description of the built-in network management capabilities
of the protocol. Chapter 12 describes the essential behavioral characteristics of the
protocol. Finally, the syntax of all Protocol Data Units is summarized in Appendix
A.

Terminology and Overview

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 8 of 112

 2. TERMINOLOGY AND P ROTOCOL OVERVIEW

2.1 Terminology

The primary objective of this document is to provide a concise yet readable speci-
fication of the LonTalk protocol. For this reason, the notation and terminology is
not as formal as that used in some other protocol specifications.

Simple Channel

S&F
Repeater

x y

Bridge

Router

Subnet B, B', ...

Subnet A, A', ...

Domain A Domain B

Gateway

connects two channels (x and y); forwards all
packets from x to y and vice versa, as long as
the packets originated on one of the same
domain(s) as the bridge

Bridge

Router
routes packets to their respective destinations by
selectively forwarding from subnet to subnet; a
LonTalk router always connects two (sets of)
subnets; LonTalk routers may modify the layer 3
address fields to prevent packets from looping.

(Application) Gateway
interconnects networks at their highest protocol
layers (often two different protocols); two
LonTalk domains can be connected through an
application gateway.

Store & Forward Repeater
may repeat on the same channel or may
connect two channels; generates duplicates;
multiple repeaters may cause packet looping.

Subnet
a set of nodes accessible through the same layer
2 protocol; a routing abstraction for a channel;
LonTalk protocol subnets are limited to
≤127 nodes

Table 2.1 Basic Terminology

Terminology and Overview

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 9 of 112

Table 2.1 introduces the basic terminology employed throughout the document.
Most of it is commonly used and the terms have the same meaning in both the
general and the LonTalk context. However, there are subtle differences. For
example, bridges in general do selective forwarding based on the layer 2 destination
address. There are no layer 2 addresses in the LonTalk protocol, so LonTalk bridges
forward all packets, as long as the Domain address in the packet matches a Domain
of which the bridge is a member. Routers, in general, perform network address
modification so that two protocols with the same transport layer but different
network layers can be connected to form a single logical network. LonTalk routers
perform network address modification on packets that might otherwise loop, but
typically they only examine the network address fields and selectively forward
packets based on the layer 3 address fields.

The LonTalk protocol layering is described using the standard OSI terminology, as
shown in figure 2.1.

PDU

service
REQUEST

service
INDICATION

service
REQUEST

service
INDICATION

layer N protocol
entity

layer N protocol
entity

Figure 2.1 Protocol Terminology

The Protocol Data Unit (PDU) abbreviations used throughout this document are:

MPDU MAC Protocol Data Unit, or frame
LPDU Link Protocol Data Unit, or frame
NPDU Network Protocol Data Unit, or packet
TPDU Transport Protocol Data Unit, or a message/ack
SPDU Session Protocol Data Unit, or request/response
NMPDU Network Management Protocol Data Unit
DPDU Diagnostic Protocol Data Unit
APDU Application Protocol Data Unit

2.2 Overview of LonTalk Protocol Layering

LonTalk protocol layering consists of the layers shown in table 2.2. At each layer
within the table there is a description of the services provided within that layer.
Each layer is described below.

Terminology and Overview

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 10 of 112

Multiple Physical Layer protocols and data encoding methods are used in LonTalk
systems. Each encoding scheme is media dependent. For example, differential
Manchester encoding is used on twisted pair, both FSK modulation and a modified
direct sequence spread spectrum system is used on the power line, FSK modulation
is used on RF, etc.

In order to deal with a variety of media in the potential absence of collision detec-
tion, the MAC (Medium Access Control) sublayer employs a collision avoidance
algorithm called Predictive p-persistent CSMA (Carrier Sense, Multiple Access). For
a number of reasons, including simplicity and compatibility with the multicast
protocol, the Link layer supports a simple connection-less service. Its functions are
limited to framing, frame encoding, and error detection, with no error recovery by
re-transmission.

Link Layer
framing, data encoding, CRC error checking

MAC Sublayer
predictive p-persistent CSMA: collision avoidance;

optional priority and collision detection

Network Layer
connection-less, domain-wide broadcast, no segmentation,

loop-free topology, learning routers

Physical Layer
multiple-media, medium-specific protocols (e.g., spread-spectrum)

Transaction Control Sublayer
common ordering and duplicate detection

Session Layer
request-response service

Application & Presentation Layers

Transport Layer
acknowledged and unacknowledged unicast and multicast

Authentication
server

LAYERS 6, 7:

LAYER 5:

LAYER 4:

LAYER 3:

LAYER 2:

LAYER 1:

Network Management:
network management RPC,
diagnostics

Application:
network variable exchange,
application-specific RPC, etc.

Table 2.2 LonTalk Protocol Layering

Terminology and Overview

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 11 of 112

The Network layer handles packet delivery within a single domain, with no provi-
sions for inter-domain communication. The Network service is connection-less,
unacknowledged, and supports neither segmentation nor re-assembly of messages.
The routing algorithms employed by the network layer to learn the topology
assumes a tree-like network topology; routers with configured tables may operate
on topologies with physical loops, as long as the communication paths are logically
tree-like. In this configuration, a packet may never appear more than once at the
router on the side on which the packet originated. The unicast routing algorithm
uses learning for minimal overhead and no additional routing traffic. Use of
configured routing tables is supported for both unicast and group addresses,
although in many applications a simple flooding of group addressed messages is
sufficient.

The heart of the protocol hierarchy is the Transport and Session layers. A common
Transaction Control sublayer handles transaction ordering and duplicate detection
for both. The Transport layer is connection-less and provides reliable message
delivery to both single and multiple destinations. Authentication of the message
sender’s identity is provided as an optional feature. The authentication server
requires only the Transaction Control Sublayer to accomplish its function. Thus
transport and session layer messages may be authenticated using all of the LonTalk
addressing modes other than broadcast.

The Session layer implements a simple Request-Response mechanism for access to
remote servers. This mechanism provides a platform upon which application
specific remote procedure calls can be built. The LonTalk network management
protocol, for example, is dependent upon the Request-Response mechanism in the
Session layer -- even though it accesses the protocol via the application layer
interface.

The Presentation layer and the Application layer taken together form the
foundation of interoperability for LonTalk nodes. The application layer provides
all the usual services for sending and receiving messages, but it also contains the
concept of network variables. The presentation layer provides information in the
APDU header for how the APDU is to be interpreted for network variable updates.
This application independent interpretation of the data allows data to be shared
among nodes without prior arrangement. With agreement on which network
variables are to be used for sensors, actuators, etc. intelligent components from
different manufacturers may work together without prior knowledge of each
other's characteristics.

Addressing

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 12 of 112

 3. NAMING AND ADDRES SING

3.1 Address Types and Formats

LonTalk addresses are hierarchically structured. There are three basic address types,
with three components per address, as shown below.

(Domain, Subnet, Node)
(Domain, Subnet, Neuron_ID)
(Domain, Group, Member)

The syntax and semantics of the individual address components are described i n
sections 3.2–3.5. The source and destination addresses are transported within every
PDU. For this purpose, the basic addressing formats shown above are further
combined into addressing pairs, defined in section 3.6.

Each LonTalk address is a combined layer 3 and layer 4 address; no addressing is em-
ployed at layer 2. The domain and subnet address components are used in routing
and could be called a network address as a result. The Neuron_ID is a name rather
than an address, since it does not change when the node is moved. Thus, address
components used in routing (layer 3) and naming (layer 4) are combined i n
LonTalk addressing.

Address size varies in general while being invariant within each domain. The size
of the domain field varies (0,1,3, or 6 bytes); the subnet and group fields are 8 bits
wide, allowing for up to 256 groups and 255 subnets per domain (subnet 0 is a
reserved value); the size of the node field is 7 bits (an all zeros field not being used);
the size of the group member field is 6 bits with a range of 0..63; and the Neuron_ID
field is 48 bits wide. This yields 28-1 *27-1 or ~215 nodes per LonTalk domain.
Multiple domains can be used in a single system to increase the number of group
addresses, nodes, etc.

3.2 Domains

The LonTalk domain identifier is the first component of the addressing hierarchy.
This identifier uniquely identifies a LonTalk domain within some context. The size
of the domain identifier depends on this context; 48-bit domain identifiers are
provided for world-wide uniqueness. When or where this context is otherwise
limited (e.g., physically, say within a single building), domain identifiers of smaller
size may be used.

A domain is a virtual network , with all communication being limited to a single
domain. One reason is that the source and destination addresses of an
NPDU/TPDU must belong to the same domain (see 3.3 below). Another reason is
that the LonTalk protocol stack does not support the equivalent of an internet

Addressing

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 13 of 112

protocol; where inter-domain communication is needed, it must be facilitated by
application level gateways.

A domain is also the unit of management and administration. In particular, group
and subnet addresses are assigned by the administrator responsible for the domain,
and they have meaning only in the context of that domain.

3.3 Subnets and Nodes

The LonTalk subnet identifier is the second component of the addressing hierarchy.
Its value uniquely identifies a subnet within a domain; the subnet address of 0
signifies that the subnet is undefined or unknown.

A subnet is a domain subset containing 0-127 nodes with the property that there is
no routing within a subnet. Subnets are a routing abstraction for a channel; that is,
subnets are logical channels, and need not correspond to the physical channel
topology. One or more subnets may be mapped onto a single channel (or onto two
or more channels connected via store and forward repeaters or bridges).

Note: The term subnet is normally used in communications when referring to a subset of a net-
work such that there is no routing within that subset. LonTalk subnets have the additional
property that they contain at most 127 nodes. As a result, two or more LonTalk subnets may
be contained in what would normally be called a subnet. In the LonTalk protocol, this is
referred to as a channel. That is, a channel is a physical unit of bandwidth and a subnet is a
logical construct used for routing in the LonTalk protocol. Note also that a channel is a
physical unit of bandwidth, so a channel is composed of one or more network segments. When
a channel consists of multiple segments, these segments shall be connected by physical layer
repeaters so that the bandwidth of the channel remains constant regardless of the number of
segments that it contains.

The node identifier identifies a (logical) node within a subnet. A physical node may
belong to more than one subnet; when it does, it is assigned one (logical) node
number for each subnet to which it belongs. A physical node may belong to at most
two subnets, and those subnets must be in different domains.

3.4 Groups

The LonTalk group identifier is the second component of the addressing hierarchy.
It uniquely identifies a set of nodes within a domain. Within this set, individual
members are identified by the third addressing component (i.e., the member
number).

Group addressing facilitates one-to-many communication. Groups are intended to
support functional addressing, and, in particular, the concept of network variables
used in the LonTalk application protocol.

Addressing

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 14 of 112

Node is a member of Subnet 1

Node is a member of Subnet 2

Node is a member of Subnet 3

Node is a member of Subnet 4

Node is a member of Subnet 5

Notes:

A single subnet may span multiple channels via bridges.

A single channel may carry packets from multiple subnets.

A single channel may include nodes belonging to multiple
subnets.

A group can be formed without regard to physical
topology; i.e., it can have members from many
channels and subnets.

A single node can be a member of up to 15 different groups.

Channel 1 Channel 2

Channel 3 Channel 4
Group 2 Group 3

Group
4

Channel 5

Group 1

Router Router

Router

Bridge

LonTalk Domain

Node is a member of Subnet 6

Figure 3.1 LonTalk Physical Topology And Logical Addressing (Single Domain)

3.5 Neuron_ID

Each LonTalk node is assigned a unique 48-bit identifier called Neuron_ID. The
value of this identifier does not change from the time of manufacture. A
Neuron_ID is a name rather than an address. When the Neuron_ID is used as an
address, it may only be used as a destination address, and it must be combined with
the domain and the source subnet addressing components (see section 3.6).

3.6 NPDU Addressing

For NPDU addressing, the basic addressing formats introduced in section 3.1 are
combined into (Source, Destination) address pairs as defined in table 3.1 and figure
3.2. An NPDU carries both the source and the destination address in one of the five
possible addressing formats.

Addressing

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 15 of 112

Type Logical Address Format Used with TPDU/SPDU Type

#0: (Domain, sourceSub-Node,destSubnet) broadcast: Domain wide or by
individual subnet

#1: (Domain, sourceSub-Node, destGroup) multicast: Message or Reminder
#2a: (Domain, sourceSub-Node, destSub-Node) unicast: Message, Reminder,

or Acknowledgment
#2b: (Domain, sourceSub-Node, destSub-Node, Group, Mem) multicast: Acknowledgment
#3: (Domain, sourceSub-Node, destSub, Neuron_ID) unicast: Message or Reminder

Table 3.1 NPDU/TPDU/SPDU Addressing—Logical Address Formats

In each address format, a source subnet of 0 means that the node does not know its
subnet number. This is the condition of a node prior to configuration with network
management messages. In figure 3.2, below, note that each of the address formats
contains a 7 bit source node field. The eighth bit in the source node field byte is the
selector field. It is used to supply sub-variants of addressing formats. Address format
#2 is the only address format using this capability. In figure 3.2 the numbers above
each of the fields represent their bit widths. The first byte of the NPDU contains the
NPDU header, which contains the protocol version, the format of the enclosed
PDU, the addressing format, and the length of the domain field. The next part of the
NPDU header specifies one of the four primary address formats. The final part of
the NPDU header contains the length of the domain. The address field
immediately follows the NPDU header.

{ Broadcast }SrcSubnet0:

1:

2a:

2b:

3:

SrcSubnet

SrcSubnet

SrcSubnet

SrcSubnet

8

1

8

48

1 SrcNode DstSubnet

1 SrcNode DstGroup

1 SrcNode DstSubnet 1 DstNode

0 SrcNode DstSubnet 1 DstNode Group

1 SrcNode Neuron ID

1 7 8

7

DstSubnet

GrpMemb
8

2 2 2 0/8/24/48 (domain field length is
0, 1, 3, or 6 bytes)AddrFmt Length Address Domain

2
Ver PDU

Fmt

Figure 3.2 NPDU/TPDU/SPDU Addressing—Physical Address Formats

The first part of the address field is the source subnet field. This field is used for
routers to both learn the topology and to prevent packet looping. The combination
of the source subnet field and the source node field is used for acknowledgments,
authentication challenges, replies to authentication challenges, responses (when
the request/response mechanism is used), and rejection of packets that are received

Addressing

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 16 of 112

from the same node to which they were sent. The domain field of the length
specified in the NPDU header follows the source and destination address pair.
Finally, the PDU of the format specified in the NPDU header.

Address format #0 facilitates domain-wide broadcast. The NPDU contains the
(subnet, node) address of the source node and the destination subnet. A destination
subnet of 0 implies all subnets, while a destination subnet ranging from 1 to 255
shall broadcast only to the nodes on the named destination subnet.

Address format #1 supports multicast message delivery. It uses a source address of
the form (subnet, node), while the destination address is (group), implying message
delivery to the entire group.

Address format #2 has two variants. With variant #2a, both the source and the
destination address are of the form (subnet, node). Variant 2a is used for unicast
message delivery and acknowledgments. Variant #2b supports group
acknowledgments. Its source component is (subnet, node). The source and
destination fields are identical to format #2a to facilitate routing. Then, appended to
the source and destination fields, are the group and member numbers of the ac-
knowledging node.

Address format #3 supports addressing by Neuron_ID. Since the primary intention
of this addressing mode is to facilitate address assignment, Neuron_ID can only be
used as destination address. The ID may be obtained from the node via a special
network management message described in the Network Management chapter, and
can also be had by actuating the service pin on the node (also described in the
Network Management chapter). In cases where the destination subnet is unknown,
a destination subnet of zero is used to propagate the packet throughout the
network.

3.7 Address Assignment

The 48-bit Neuron_ID is unique worldwide and is set at the time of node
manufacture. An unconfigured LonTalk node has no assigned address apart from
its 48-bit Neuron_ID. These unconfigured nodes receive packets from all domains,
looking for and responding to any packet containing the node’s 48-bit Neuron_ID.

A node may be assigned multiple addresses. In addition to its Neuron_ID, a node is
usually assigned one address of type (domain, subnet, node) and zero to fifteen
addresses of type (domain, group, member). A node is typically a member of only
one domain; a LonTalk node may be a member of up to two domains, however.
Nodes that belong to multiple domains have two (domain, subnet, node)
addresses—one for each domain.

MAC Sublayer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 17 of 112

 4 MAC SUBLAYER

4.1 Service Provided

The LonTalk Media Access Control (MAC) sublayer facilitates media access with
optional priority and optional collision detection/collision resolution. It uses a
protocol called Predictive p-persistent CSMA (Carrier Sense, Multiple Access),
which has some resemblance to the p-persistent CSMA protocol family.

Predictive p-persistent CSMA is a collision avoidance technique that randomizes
channel access using knowledge of the expected channel load. A node wishing to
transmit always accesses the channel with a random delay in the range (0..w). To
avoid throughput degradation under high load, the size of the randomizing
window is a function of channel backlog BL: w = BL*Wbase, where Wbase is the base
window size. Provided that the real backlog does not exceed the estimated backlog
(see 4.6 below), the average collision rate does not exceed 1 in 2Wbase.

4.2 Interface to the Link Layer

The MAC sublayer is closely coupled to the LonTalk Link layer, described in chapter
5. With the MAC sublayer being responsible for media access, the Link layer deals
with all the other layer 2 issues, including framing and error detection. For
explanatory purposes, the interface between the two layers is described in the form
shown in figure 4.1.

M_Data_Request ()

L_Data_Indication () L_Data_Request ()

Frame_OK ()

P_Channel_Active()

Link
Layer

MAC
Sublayer

P_Data_Indication () P_Data_Request ()

To/From Physical Layer

Figure 4.1 Interface Between the MAC and Link Layers

MAC Sublayer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 18 of 112

Although the service interface primitives are defined using a syntax similar to
programming language procedure calls, no implementation technique is implied.
Frame reception is handled entirely by the Link layer, which notifies the MAC
sublayer about the backlog increment via the Frame_OK () primitive.

The interface between the Link and the MAC layers is facilitated by the following
service interface primitives:

M_Data_Request (Priority, delta_BL, ALT_Path, LPDU)

This primitive is used by the Link layer to pass an outbound LPDU/MPDU to the MAC
sublayer. Priority defines the priority with which the frame is to be transmitted;
delta_BL is the backlog increment expected as a result of delivering this MPDU.
ALT_Path is a binary flag indicating whether the LPDU is to be transmitted on the
primary or alternate channel, baud rate, etc.

Frame_OK (delta_BL)

On receiving a frame and verifying that its checksum is correct, the Link layer invokes
this primitive to notify the MAC sublayer about the backlog increment associated
with the frame just received.

4.3 Interface to the Physical Layer

The Physical layer handles the actual transmission and reception of binary data.
Every LonTalk node communicates to the physical layer in one of two modes: direct
mode and special purpose mode. In direct mode, the Link layer uses differential
Manchester encoding. In special purpose mode, data are transferred serially in and
out of the node without encoding. In both modes a 16-bit CRC is generated on
transmission and checked on reception. These two modes form an abstraction for
all the physical layers supported by the LonTalk protocol.

Multiple Physical layer protocols are employed in the LonTalk system. These pro-
tocols may employ media-specific features as long as the following three require-
ments are met:

• Physical idle state, used to represent the idle channel condition, is a
low power consumption state;

• Bit error rate is equal to, or better than, than 1 in 10-4, as presented to
layer 2;

• For compatibility with the higher layers, all physical protocols must
support the service interface defined below.

The service interface to be supported by all physical layers is (see figure 4.1):

MAC Sublayer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 19 of 112

P_Data_Indication (Frame)

Physical layer provides this indication to the higher layers once per incoming
LPDU/MPDU.

P_Data_Request (Frame, Status)

The MAC sublayer uses this primitive to pass the Frame, the encoded LPDU/MPDU,
to the physical layer for immediate transmission. The bit transmission order is defined
in Appendix A. The physical layer returns Status as to whether the frame was
transmitted. Status has three possible values: success—indicating the frame was
transmitted, request_denied—indicating that activity was detected on the line prior
to transmission, and collision—indicating that transmission began, but a collision was
detected. Whether or not the transmission is aborted depends on whether the interface
to the physical layer is direct mode or special purpose mode as well as when the
collision is detected (see below).

P_Channel_Active()

The physical layer uses this primitive to pass the status of the channel to the MAC
sublayer. This is an indication of activity, not necessarily of valid data.

4.4 Collision Detection Notification

If collision detection is provided by the physical layer, the action taken upon noti-
fication of a collision depends upon when the collision is detected and what mode
(direct or special purpose) is being used for the communications port.

In special purpose mode, transmission of an outgoing packet is aborted by the
physical layer immediately upon detection of a collision. The MAC sublayer is then
notified that the collision occurred. Transceivers that can perform arbitration based
upon a pattern at the beginning of a packet take advantage of this feature to
implement collision resolution. Such transceivers must have a sufficiently long
preamble after the arbitration pattern so that other transmitting nodes that have
lost the arbitration for the channel can notice channel activity and receive the
incoming packet from the station that just won the arbitration.

In direct mode transmission of an outgoing packet, the MAC sublayer checks for a
collision indication at the end of transmission. Optionally, the MAC sublayer may
be configured to check for a collision approximately half way through the trans-
mission of the packet preamble. If this option is chosen, and a collision is detected
by the physical layer during the preamble, the transmission of the packet is aborted.

In both special purpose mode and in direct mode the MAC sublayer attempts to re-
transmit the packet upon notification of a collision using the MAC protocol
described in the remainder of section 4.

MAC Sublayer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 20 of 112

4.5 MPDU Format

The combined MPDU/LPDU format is shown in figure 4.2. In direct mode, the
ByteSync field, which indicates the beginning of a frame, is 1 bit wide and has a
value of ‘0’. ByteSync is preceded by BitSync in direct mode. BitSync is a string of ‘1’
bits, the length of which is a channel configuration parameter. BitSync must be long
enough for all nodes on the channel to see activity and synchronize on the
incoming bit stream. Also, in direct mode, the frame is terminated by the trans-
mitter holding the idle line state for at least 2.5 bit times plus the propagation delay
of the channel. Receivers detect end of frame by seeing the idle line state for at least
1.25 bit times.

When the interface to the physical layer is via special purpose mode, the BitSync,
ByteSync and end of frame are determined by the external transceiver.

0

BitSync ByteSync CRCNPDU

LPDU/MPDU

L2Hdr
8 16

11…11

1

1 6
Pri Alt Path Delta BL

1

Figure 4.2 LonTalk MPDU/LPDU Format

The MAC layer uses the L2Hdr field, which has the following syntax and semantics:

Pri 1-bit field specifying the priority of this MPDU: 0 = Normal, 1 = High

Alt_Path a 1-bit field specifying the channel to use. This is a provision for transceivers
that have the ability to transmit on two different channels and receive on
either one without prior configuration. The transport layer sets this bit for
the last two retries, or the MAC sublayer can be configured to always transmit
on the alternate path.

Delta_BL a 6-bit field; specifies channel backlog increment to be generated as a result of
delivering this MPDU

4.6 Predictive p-persistent CSMA — Overview Description

Like CSMA, Predictive p-persistent CSMA senses the medium before transmitting.
A node attempting to transmit monitors the state of the channel (see figure 4.3),
and when it detects no transmission during the Beta1 period, it asserts the channel
is idle.

MAC Sublayer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 21 of 112

Next, the node generates a random delay T (transmit) from the interval
(0..BL*wbase), where wbase is the size of the basic randomizing window and BL is an
estimate of the current channel backlog. T (transmit) is defined as an integer
number of randomizing slots of duration Beta2 (see sections 4.7 and 4.8). If the
channel is idle when the delay expires, the node transmits; otherwise, the node
receives the incoming packet, and then repeats the MAC algorithm. In figure 4.3
below, Dmean is the average delay between packets, and, since the random delay T
is uniformly distributed, Dmean is given as Wbase/2 for small values of BL. In
theory, when BL is large the algorithm tends to overestimate the backlog, which can
cause Dmean to increase until the backlog decays although in practice this affect is
mitigated by processing delays in the nodes. This is because the backlog is
incremented when a packet is received with a non-zero backlog increment. The
backlog then decays while the nodes are formulating their acknowledgments so that
empirically it is found that the overestimation of the backlog is brief, and channel
utilization remains near saturation.

Busy Channel “Packet Cycle”

Packet Packet

Beta2
Beta1

Dmean = Wbase/2

Figure 4.3 Predictive p-persistent CSMA Concepts and Parameters
Beta1 = Idle Slot, Beta2 = Randomizing Slot

By adjusting the size of the randomizing window, Wbase, as a function of the pre-
dicted load, the algorithm keeps the collision rate constant and independent of the
load. Provided that the estimated backlog is greater than or equal to the real backlog,
the following holds:

Collision Rate = Error Pkt Cycles / Error Free Pkt Cycles ≤ 1 / 2Wbase

A base window size of 16 maximizes the L4/L5 transaction throughput. This
implies that there are an average of 8 randomizing slots of width Beta2 and one slot
of width Beta1 between each packet. Also, the width of the Beta2 period is crucial to
efficient utilization of the channel.

MAC Sublayer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 22 of 112

4.7 Idle Channel Detection

The idle channel condition is asserted whenever the following two conditions are
met:

1) The current channel state reported by the physical layer via the
P_Data_Indication () primitive is low ; and

2) No transition has been detected during the last period of Beta1.

The length of the Beta1 period is defined by the following constraint:

Beta1 > 1 bit time + (2 * Taup + Taum)

The first term assumes a data encoding method which guarantees a transition
and/or carrier during every bit time. In special purpose mode, when encoding
methods are used which do not meet this constraint, then the first term must be
adjusted to be the longest time that the channel may appear idle without being idle,
i.e. the longest run in legal data transmission without a transition and/or carrier
asserted on the medium. The second term takes care of propagation and
turnaround delays, which are:

Taup is the physical propagation delay defined by the media length;

Taum is the detection and turn-around delay within the MAC sublayer;
this is the period from the time the idle channel condition is
detected, to the point when the first output transition appears on
the output. On media where there is a carrier, this time must
include the time between turning on the carrier, and it being
asserted as a valid carrier on the medium.

4.8 Randomizing

At the beginning of the randomizing period, a node wishing to transmit generates a
random delay T (transmit) from the interval (0..BL*wbase). The node then waits for
this period, while continuing to monitor channel status; if the channel is still idle
when the delay expires, the node transmits.

The transmit delay T (transmit) is specified as an integer number of randomizing
slots of duration Beta2; the length of the randomizing slot must meet the following
constraint:

Beta2 > 2 * Taup + Taum

Parameters Taup and Taum are defined in section 4.7.

MAC Sublayer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 23 of 112

4.9 Backlog Estimation

The predictability of the MAC algorithm is based on backlog estimation. Each node
maintains an estimate of the current channel backlog BL, which is incremented as a
result of sending or receiving an MPDU and decrements periodically—once every
packet cycle. The increment to the backlog is encoded into the link layer header, and
represents the number of messages that the packet shall generate upon reception.
The backlog also decrements if BL * wbase randomizing slots go by without channel
activity.

The backlog always has a value ≥ 1. The algorithm post-increments rather than pre-
increments the backlog by the amount associated with the MPDU being transmitted,
because the number of expected responses is of no importance until after
transmitting the MPDU.

4.10 Optional Priority

On a channel by channel basis, the LonTalk protocol supports optional priority.
Priority slots, if any, follow immediately after the Beta1 period which follows the
transmission of a packet. The number of priority slots per channel ranges from 0 to
127. Priority slots are typically not contended for, but rather are uniquely assigned to
nodes on the channel. Nodes that have been assigned a priority slot do not have to
use it with every message; the node decides on a message by message basis whether
or not to use the assigned priority slot. This determination is made by examining
the priority bit within the LPDU header (figure 4.2).

It is possible to assign all the nodes on the channel the same priority slot. A n
example of an architecture where this makes sense would be one where there is a
background of peer-to-peer activity, but a single master which cycles around doing
something to each node (such as network management, polling, etc.). By giving
each node the same slot, and having it used only for this purpose, these
transactions (from the single master to multiple slaves) would tend to be completed
ahead of the background traffic.

An application may decide that a message is high priority and attempt to send it as
such. If the node does not have a priority slot assigned to it, the message shall go
out in the usual way, except that the priority bit in the layer 2 header shall be set. If,
subsequently, the packet passes through a router that has a priority slot on its
destination channel, the packet shall be sent using the priority of the router.

MAC Sublayer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 24 of 112

Beta2
Beta1

1

Busy Channel “Packet Cycle”

Packet Packet}

Priority Slots

Dmean = Wbase/2

2 3 … n

Figure 4.4 Allocation Of Priority Slots Within the Busy Channel Packet Cycle

The LonTalk protocol provides no synchronization among the nodes. Therefore, if
the channel has been idle for longer than the randomizing period (Beta1 + number
of priority slots + Dmean above), access to the link is random without regard to
priority. Once the link returns to the busy state, access to the link shall be in priority
order.

If a priority message is sent using either the request/response protocol or reliable
message passing, then the responding node shall attempt to send a priority
acknowledgment/response by setting the priority bit in the layer 2 header. If a high
priority message is generated within a node, it is sent prior to any queued packets of
normal priority. Multiple high priority packets are sent in FIFO order. If the
application attempts to send a high priority message while its node is sending a
packet, the packet in progress completes first.

If a node has multiple priority messages queued within it, it shall not send the
priority messages in consecutive packet cycles, as this would effectively tie up the
channel. In the case where a node has a priority packet to send, and it has sent a
packet in the previous packet cycle, the node does not use its priority slot in the
current cycle. Instead it attempts to access the medium using the non-priority MAC
algorithm. If the node is not successful in the current packet cycle, it may use its
priority slot in the subsequent packet cycle.

4.11 Optional Collision Detection

The MAC sublayer obeys some special rules when collision detection is enabled.

1. If a collision is detected on two successive attempts to transmit a
priority packet in the node’s priority slot, the next attempt to
transmit the priority packet shall not use the configured priority slot,

MAC Sublayer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 25 of 112

but rather shall be in a slot picked according to the non-priority MAC
algorithm.

2. Whenever a collision is detected by a transmitting node, that trans-
mitting node increments its estimate of the channel backlog by 1.

3. Whenever a collision is detected on 255 successive attempts to
transmit a packet, the packet is discarded.

4.12 The Predictive CSMA Algorithm

 Algorithm 4.12:

Channel-wide constants:

Beta1 idle slot length (see section 4.6)
Beta2 length of the randomizing slot (see 4.7)
wbase basic randomizing window (for BL=1), wbase = 16
BLmax maximum value of channel backlog, BLmax ≤ number of nodes on the channel
Pslots number of priority slots allocated on the channel (range 0–127)
NodePslot priority slot assigned to this node (range 0–127 with 0 being no priority slot

assigned to the node)

State variables and timers:

BL an estimate of the current channel backlog
Cstate channel state, one of (busy, busy1, ..., idle) defined by algorithm 4.12
PktToXmit Boolean
T (Cycle) the “packet cycle” timer, expires every (AvgPktSize + wbase/2)
T(transmit)transmit/randomizing timer (see section 4.7)

Events driving the algorithm:

M_Data_Request (priority, delta_BL, Alt_path, Frame)
Frame_OK (delta_BL) {indication from the Link layer, see 4.2}
Channel_Idle () { indication from algorithm 4.12 }
Timer Expiration {of T (transmit) or T (Cycle) }

MAC Sublayer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 26 of 112

begin { algorithm 4.12 }
Case Event Of

Frame_OK (delta_BL):
Begin
BL := BL + Delta_BL;
if BL > BLmax then BL := BLmax;
end;

M_Data_Request (priority, delta_BL, Alt_path, Frame):
begin
PktToXmit := True;
if Cstate= Idle then Begin

 /*Depending on priority, generate a random delay in the following range: */
Normal: transmit := rand(0 .. wbase * BL) + Pslots;
High: If NodePslot <> 0

transmit := NodePslot;
else

transmit := rand(0 .. wbase * BL) + Pslots;
/* Backlog value BL used to generate the above random number */
/* should be either the value at time t, or at (t-1), where t is current time */

Start timer T(transmit);
end;

Channel_Idle ():
If (PktToXmit = True) and (T(transmit) not running) then

Start timer T (transmit);
end;

T (Cycle) Expiration:
If BL > 1 Then Begin

BL := BL - 1;
Restart T (Cycle);
Restart T (wbase);

end;

T (wbase) Expiration:
If BL > 1 Then Begin

BL := BL - 1;
Restart T (wbase);

end;

MAC Sublayer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 27 of 112

T (transmit) Expiration:
If Cstate = Idle Then Begin

{ process M_Data_Request () now }
Transmit Frame;
if collision_detected then Begin

BL++;
if BL > BLmax then BL := BLmax;
Event := M_Data_Request(priority,delta_BL, Alt_path, Frame);
end;

else Begin
BL := BL + delta_BL;
if BL > BLmax then BL := BLmax;
PktToXmit := False;
end;

end;
end case;

 end { algorithm 4.12 } ;

4.13 Timing

Communication speeds of the Neuron Chip are derived from its input clock. There
are five possible input clock values and 8 different communications port values
derived from the supplied input clock value. Possible values of the input clock are
10 MHz, 5 MHz, 2.5 MHz, 1.25 MHz and 625 kHz. These input clock values allow
the communications port of the Neuron Chip to run at speeds from 1.25 Mbps all
the way down to 610 bps. The communications port can be configured to operate i n
direct mode where the Neuron Chip controls the data rate, preamble length, and
data encoding. Alternatively, the communications port can be configured to
operate in special purpose mode where the transceiver controls the data rate,
preamble length, and data encoding. In all cases, the Neuron Chip controls the beta
1 and the beta 2 times.

Preamble length, beta 1 and beta 2 times must be configurable to support a wide
variety of physical communication channels and to allow nodes running with
different input clocks to communicate on the same physical channel. The formulae
for beta 1 and beta 2 which yield all possible discrete values for beta 1 and beta 2 are
shown below. In each formula CT is the cycle time of the Neuron Chip and v, a
tuning parameter, has the range of 0 to 255 inclusive, and PAD is a time delay to
compensate for other Neuron Chips which are on the same physical channel, but
have slower input clocks.

beta 2 = CT * (40 + 20 * v)

beta 1 = CT * (583 + beta 2 + PAD) { direct mode communications port }

beta 1 = CT * (577 + beta 2 + PAD) { special purpose mode communications port }

MAC Sublayer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 28 of 112

PAD = 41 * v {for v < 128}
PAD = 145 * (v-128) {for 128 ≤ v < 256}

Preamble length is either controlled by the Neuron Chip or by the transceiver as
stated above. When the preamble is controlled by the Neuron Chip, the formula for
all possible values of preamble length is shown below. For this formula the variable
v has a range of from 0 to 253 inclusive. CT is as defined above.

preamble = CT * (219 + 32 * v)

When the transceiver controls the preamble length, the minimum preamble
length allowed is 181 µseconds. This is the value at a 10 MHz input clock. This
value scales with the input clock. The maximum preamble length in special
purpose mode is totally under the control of the transceiver.

Link Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 29 of 112

 5. LINK LAYER

5.1 Assumptions

The Link layer assumes that CRC errors due to both collisions and transmission
errors occur with some probability Pe, and that Pe is small enough so that Link
level error recovery is not needed.

The above assumption means that successful end-to-end communication is only
possible when the sum of error probabilities along the communication path is less
than one, i.e.

SUM (Pe) << 1

In networks where Pe is constant, the maximum communication distance D
(network or group diameter) must be:

D << 1 / Pe

5.2 Service Provided

The LonTalk Link layer provides subnet-wide, ordered, unacknowledged LPDU
delivery with error detection but no error recovery. A corrupted frame is discarded
as soon as its CRC check fails.

In the direct mode interface to the Physical layer, frame encoding is done using
differential Manchester encoding. When using the special purpose mode interface
to the Physical layer, frame encoding is accomplished with an external transceiver
using an encoding method appropriate to the medium. When using any of the
LonTalk protocol supported media, the link layer must see channel busy and detect
an idle line in the same manner as in direct mode, regardless of how these patterns
are physically transmitted on the medium.

5.3 LPDU Format

Format of the combined MPDU/LPDU was shown in figure 4.2. In direct mode, the
ByteSync field, which indicates the beginning of a frame, is 1 bit wide and has a
value of ‘0’. Prior to transmission of ByteSync, a preamble called BitSync is
transmitted. In direct mode, BitSync is some number of ‘1’ bits long. The length of
the BitSync period is determined by the channel configuration. The frame is
terminated by the idle state, which in direct mode, is at least 2.5 bit times long, and
is simply the absence of transitions. When using the communication port in special

Link Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 30 of 112

purpose mode, the content of the preamble is under control of the transceiver, as is
the end of frame indication.

The CRC is computed over the entire NPDU including the L2Hdr field. The CRC is
generated using the polynomial X16 + X12 + X5 + 1 (the CCITT CRC-16 standard).

5.4 The Transmit Algorithm

 Algorithm 5.4:

Input:
L_Data_Request () from the Network layer

Output:
M_Data_Request() service request to the MAC layer

L_Data_Request (Prio, delta_BL, Alt_path, NPDU):
begin

Create LPDU and compute CRC;
If Direct Mode

Encode LPDU using differential Manchester encoding and add preamble;
Make the M_Data_Request (Prio, delta_BL, Alt_path, LPDU)) to the MAC sublayer;

end; {algorithm 5.4 }

5.5 The Receive Algorithm

A valid LonTalk frame starts with the channel active state, and terminates with the
channel idle state. Upon reception, valid frames are processed as defined below;
invalid frames are discarded.

 Algorithm 5.5:

begin
If Direct Mode

{Decode frame—from differential Manchester to binary;}
Compare the computed and the enclosed CRCs;
If correct then begin

Provide Frame_OK () indication to the MAC layer;
Provide L_Data_Indication to layer 3;
end;

else begin
Record CRC error;
end;

end; { algorithm 5.5}

Link Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 31 of 112

5.6 Differential Manchester Encoding

When communicating via direct mode, the LonTalk protocol uses differential
Manchester encoding. This encoding method has the benefits of zero DC offset,
polarity insensitivity, and simple bit synchronization between the transmitter and
the receiver(s). In this encoding method, there is a minimum of one transition per
bit time at the beginning of the bit time. If there is a second transition within the bit
time, it occurs in the middle of the bit. By convention, a single transition per bit
time is a ‘1’ and two evenly spaced transitions per bit time is a ‘0.’

Network Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 32 of 112

 6. NETWORK LAYER

6.1 Assumptions

The LonTalk protocol supports a variety of topologies in order that the require-
ments from many application areas can be met. Within a single channel, the topol-
ogy can be a bus, a ring, a star, or “free” (see Figure 6.1). Free topology is defined as a
total wire specification with no other rules, and a single termination placed
anywhere on the network. Thus, the set of all free topologies includes a ring, a star,
a bus and virtually any other combination of these constructs.

T

star

T

ring

“free”

T

bus

TT

T erminator

Figure 6.1 Single Channel Topologies

The LonTalk protocol supports physical layer repeaters as well as store and forward
repeaters to repeat packets from one channel to another. The protocol also supports
bridges to repeat all packets on the bridge’s domain(s) from one channel to another.
Additionally, both learning and configured routers are supported to segment traffic
and thus increase total system performance.

In networks where there is a possibility of more than one path from one node to
another, there is a danger of packets looping indefinitely. In these networks,

Network Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 33 of 112

configured routers must be used to impose a tree structured topology on top of the
physical looping topology.

If there is a desire to use repeaters, bridges, and learning routers, then control of the
topology must be maintained so that no loops exist. To avoid routing loops within
a domain, domain topology must be tree-structured as shown in figure 6.2. Store
and forward repeaters may only be used if they connect two different channels
together; store and forward repeaters that repeat on the same channel are not
supported. This restriction results in an order preserving network.

Router Router

Router

Route (group) = one of (up, down, flood)
Route (subnet) = one of (up, down, flood)

up
down

Figure 6.2 Typical Tree-Like Domain Topology

6.2 Service Provided

The LonTalk Network layer provides a connection-less network service facilitating
domain wide packet delivery with the following attributes:

• Unacknowledged Unicast, Multicast, and Broadcast. Depending on its
destination address, the packet submitted is delivered to one node,
multiple nodes, or all nodes within the domain (or optionally all nodes
on a specified subnet within the domain). This delivery occurs with
some probability p ≤ 1;

• Lossiness. The network layer supports no re-transmissions or
acknowledgments. The probability of delivery is inversely proportional
to the number of channels traversed;

Network Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 34 of 112

• Order Preserving. Loop-free topology (accomplished logically with con-
figured routers or physically via topological control) coupled with the
absence of single channel store and forward repeaters provides natural
ordering;

• No Segmentation. No message segmentation and/or message reassem-
bly are performed anywhere within the Network layer.

When learning routers are used, the routers discover the topology by examining
the layer 3 address fields in the packets. The learning algorithm imposes no addi-
tional traffic overhead on the network. It assumes that the domain is loop free, and
it learns about the location of subnets by observing the source addresses of NPDUs
being routed. NPDUs addressed to groups are routed by flooding, with the NPDU
being propagated through the entire domain.

6.3 Service Interface

The Network service interface consists of the Send_Packet () service request and the
Rcv_Packet () indication, as shown in figure 6.3. Again this interface is provided for
explanation purposes. Actual implementations may, for example, combine this
layer with the Transport layer and only expose the Transport layer interface.

Network Layer

Send_Packet () Rcv_Packet ()

Figure 6.3 Network Service Interface

The syntax of these two interface primitives is:

Send_Packet (address_pair, pduType, PDU, priority, delta_BL, Alt_path)

Rcv_Packet (address_pair, pduType, PDU, priority)

Network Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 35 of 112

6.4 Internal Structuring of the Network Layer

The LonTalk Network layer performs two functions—address recognition and
routing—as shown in figure 6.4.

Network Layer

to/from Link Layer

address recognition routing

to/from Transport Layer

Figure 6.4 LonTalk Network Layer—Internal Structure

6.5 NPDU Format

NPDU format is shown in figure 6.5. An NPDU carries and envelops either a
TPDU, SPDU, AuthPDU or APDU. There are no NPDUs defined for internal
Network layer use. The numbers above each field in figure 6.5 specify the field size
in bits. The symbolic field values used in the figure are assigned in the order

AddrFmt
2 2 2 0/8/24/48

Length Address Domain
2

see figure 3.2

encl.PDUPDU FmtVersion

protocol version = (0..3)

Figure 6.5 NPDU Format

shown, as enumerated ranges (0, 1, 2, 3, …, n). For example, a value of 3 in the
encl.PDU field signifies that the enclosed PDU is an APDU. For additional details,
including the bit/byte transmission order, refer to Appendix A.

Network Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 36 of 112

6.6 Address Recognition

Address recognition is performed by each LonTalk node. In this section the
information that must be kept by every node is identified without specifying the
address matching algorithm, which is implementation specific. For an example of
an actual implementation of these data structures, reference the Neuron Chip Data
Book published by Motorola and Toshiba.

Node_Record = record
security: (none, network_mgmt);
node_address: array [0..n] of Address_Record;
end;

Address_Record = record
 case boolean of

false: (
group; (0..255);
member: (0..63);

true: (
subnet: (0..255);
node: (0..127);

end;

6.7 Routers

A router performs the routing function for a specific domain. It connects two sets of
subnets—one set in the Up direction, and the other in the Down direction. A router
is a logical rather than physical entity; more than one router may be housed within
a single routing node.

A router uses three routing functions: ROUTEuc(), ROUTEmc(), and ROUTEbc() to
forward NPDUs. The first function specifies how to forward NPDUs addresses to
(subnet,-), the second how to forward NPDUs addressed to groups, and the third
function specifies how to forward NPDUs when they are sent via the broadcast
address format. The functions are tables, where each entry has the following form:

ROUTEuc (DestSubnet) = one of (forward, discard)
ROUTEmc(DestGroup) = one of (forward, discard)
ROUTEbc (DestSubnet) = one of (forward, discard)

The entry for an address X specifies whether an NPDU addressed to X should be
forwarded or discarded. These functions are called from the side of the router on
which the packet was received—that is, algorithm 6.8 executes independently on
each side of the router and makes all routing decisions for packets arriving at the
side on which it runs. Each side of the router shall have a different set of tables that
have the information as to whether the packet should be passed across the router or
not.

Network Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 37 of 112

In order that configured routers do not cause packet looping in those topologies
with loops, a configured router should never forward a group or a broadcast
addressed packet in the same direction as that of the source subnet encoded within
that packet. In the special case of an unconfigured node sending a broadcast
message, the source subnet field shall be zero, as shall the domain length. In this
case, the router shall modify the packet to have the router's own source subnet and
source domain prior to calling ROUTEbc().

6.8 Routing Algorithm

 Algorithm 6.8:

Input:
NPDU the NPDU to be routed

Output:

Decision one of (Forward, Drop)

Uses:
My_Domain the domain this router is assigned to
My_Subnet the subnet within the domain that this side of the router is assigned to
ROUTEuc () routing table
ROUTEmc() routing table
ROUTEbc() routing table
RouterType one of: Configured, Learning, Bridge, Repeater

Begin { algorithm 6.8 }

If RouterType = Repeater Then Begin
Decision := Forward;
Return;

end;

If RouterType = Learning Then
Execute ROUTING_EVENT of algorithm 6.9;

If NPDU.Domain <> My_Domain Then
If RouterType = Bridge or RouterType = Learning Then Begin

Decision := Drop;
Return;

end;
If NPDU.Domain <> Null_Domain Then Begin

Decision := Drop;
Return;
end;

Else
If NPDU.SourceSubnet = 0 and NPDU.DestAddrFmt= Broadcast Then Begin

NPDU.Domain := My_Domain;
NPDU.SourceSubnet := My_Subnet;

end;

Network Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 38 of 112

end;
Else If RouterType = Bridge Then Begin

Decision := Forward;
Return;

end;

Case NPDU.DestAddrFmt Of
Subnet/Node: Decision := ROUTEuc (NPDU.DestSubnet);
Group: Decision := ROUTEmc (NPDU.DestGroup);
Broadcast: Decision := ROUTEbc (NPDU.DestSubnet);

end case;

Return;
end { algorithm 6.8 };

6.9 Learning Algorithm — Subnets

The subnet routing table defining the routing function ROUTEuc() is created by the
algorithm below. Upon initialization, forwarding is used for all subnet addresses.
The algorithm subsequently learns about the location of subnets by observing the
source addresses of NPDUs being routed. Again, this algorithm executes on each
side of the router independently.

 Algorithm 6.9:

Inputs:

INIT_EVENT
always occurs on system reboot; may also occur periodically, allowing the router to adapt to
changes in network topology

ROUTING_EVENT
NPDU the NPDU to be routed
MySubnet the subnet the router is configured on for this side of the router

Output:

Defines routing function ROUTEuc ()

begin { algorithm 6.9 }
case event of

INIT_EVENT:
Set ROUTEuc () := Forward for all subnet addresses;
Set ROUTEuc (MySubnet) := Drop;
Set ROUTEmc () := Forward for all group addresses;

ROUTING_EVENT:
ROUTEuc (NPDU.SrcSubnet) := Drop

end case;
end { algorithm 6.9 };

Transaction Control Sublayer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 39 of 112

 7. TRANSACTION CONTR OL SUBLAYER

7.1 Assumptions

The transaction sequencing protocol described in this chapter uses 4-bit transaction
numbers which are allocated by the sender and used by the receiver to detect
duplicate packets. It is assumed that the network is either order preserving or, if it is
not, that packets are delayed approximately uniformly in the multiple paths that
they traverse from source to destination. The difference in packet propagation time
when there are multiple paths from a given source to a destination must be less
that the time it takes for the source to complete one transaction (via an
acknowledgment on the shortest path) and begin a second transaction to the same
destination. Stale acknowledgments and responses are detected as duplicates, but
stale packets which initiate a transaction and arrive after the second transaction has
started will not be detected as duplicates.

This implies that store and forward repeaters which operate on a single channel (as
opposed to those which connect two channels) must have small buffer pools so that
stale packets do not arrive late enough to defeat the duplicate detection mechanism.
The same comment holds for multiple bridges or store and forward repeaters, each
of which connects the same two physical channels.

The number of concurrent outgoing transactions is restricted to a single priority and
a single non-priority transaction. The maximum number of active receive
transactions is 16.

The transaction timer, receive timer, and retry count interact to establish the
reliability of the duplicate detection mechanism. It is assumed that the receive
timer is set to be long enough to cover the configured number of retries, yet short
enough so that the transaction ID does not wrap around causing a new transaction
to be falsely detected as a duplicate transaction. In implementation it is permissible
to have a transaction space for all priority transactions and a second transaction
space for all non-priority transactions.

7.2 Service Provided

The transaction control (TC) sublayer is responsible for the common functions
related to transaction ordering, sequencing, and duplicate detection. It provides the
following services:

• Outgoing Sequencing. To guarantee ordering among outgoing
Transport messages and Session layer requests, the TC sublayer controls
the allocation of send transaction numbers. It limits the number of

Transaction Control Sublayer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 40 of 112

concurrent transactions to any destination to ≤ 1 priority and ≤ 1 non-
priority transactions;

• Incoming Sequencing and Duplicate Detection. The TC sublayer
provides duplicate detection.

7.3 Service Interface

Access to TC services is facilitated by the interface depicted in figure 7.1.

00 1

New_Trans()

Trans_Done()
Validate() Compare()

Outgoing Incoming

Figure 7.1 Transaction Control Service Interface

The syntax and semantics of the interface primitives are:

New_Trans (Priority) -> (Trans_No)
is used to obtain a transaction number for a new outgoing transaction

Validate (Priority, Trans_No) -> (result)
where result = one of (current, not_current), verifies that Trans_No is in the transmit window

Trans_Done (Priority, Trans_No)
notification of an outgoing transaction completion

Compare (T1, T2) -> (result)
where result is one of (new, duplicate); defines the relationship of T1 relative to T2, where

both T1 and T2 are receive transaction numbers

7.4 State Variables

To support the allocation of transaction numbers, the TC sublayer uses a number of
destination records shown below.

Transaction Control Sublayer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 41 of 112

Transaction_CTRL_Record = record
PriTX True or False
Trans_No: (0..15); initial value = 0;
In_Progress: boolean;
end;

7.5 Transaction Control Algorithm

Algorithm 7.5 is the simple version of the transaction control algorithm in that it
provides only two transaction spaces -- one for all priority transactions and one for
all non-priority transactions. In any implementation, the first transaction ID
provided by New_Trans() after a reset shall be 0 for every transaction space
provided by the implementation. New_Trans() shall then increment the
transaction ID within the space from 1 to 15 and continue again with 1 so that the
transaction ID 0 is used exclusively by the first transaction per transaction space after
a reset.

 Algorithm 7.5:

Inputs and Outputs:
System_Reset an event signaling power-up or rebooting
New_Trans ()->() service request from Transport or Session sublayer
Validate ()->() service request from Transport or Session sublayer
Trans_Done () service notification from Transport or Session
Compare ()->() service request

State Variables:
PriTX_ID priority transaction ID
nonPri_TX_ID non priority transaction ID

begin {algorithm 7.5}
case event of

System_Reset:
begin
PriTX_ID := 0;
nonPriTX_ID := 0;
Initialize both transaction control records—by assigning:

Trans_No := 0;
In_Progress := false;

end;

New_Trans (priority) -> (Trans_No):
begin
Obtain corresponding transaction control record ;
if {record found }then begin

block the request; { details implementation specific };
end;

Transaction Control Sublayer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 42 of 112

else begin{ no current transaction record }
if (priority = True) then

Trans_No := PriTX_ID;
else

Trans_no := nonPriTX_ID;
end;

end;

Trans_Done (priority, trans_no):
Begin
Obtain transaction control record TXCTRL;
TXCTRL.Trans_In_Progress := false;
if (TXCTRL.PriTX = True)then begin

PriTX_ID := (PriTX_ID+ 1) mod 16;
if (PriTX_ID = 0)then

PriTX_ID := 1;
end;

else begin
nonPriTX_ID := (nonPriTX_ID+ 1) mod 16;
if (nonPriTX_ID = 0)then

nonPriTX_ID := 1;
end;

end;

Validate (Priority, Trans_No) -> (result):
begin
Look up transaction control record TXCTRL;
if (TXCTRL.In_Progress = True) and (TXCTRL.Trans_No = Trans_No) then

result = current
else

result := not_current;
end;

Compare (T1,T2) -> (result):
begin
if (T2 = 0)then

result := new;
else if (T2 = T1) then

result := duplicate;
else { no need to do more with order-preserving network; old transactions do not exist };

result := new;
end;

end case;
end { algorithm 7.5 };

Transport Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 43 of 112

 8. TRANSPORT LAYER

8.1 Assumptions

The Transport protocol makes no assumptions apart from relying on the
Transaction Control sublayer for correct TPDU sequencing and duplicate detection.

8.2 Service Provided

The Transport sublayer provides the following services:

• Reliable Multicast and Unicast. The transport protocol supports both
multicast within a group, and multicast to a group with the sender not
being a member of the group. All reliable services have the following
attributes: (i) reliable delivery with best effort determined by the
number of retries; (ii) assuming the layer 4 timers are set correctly,
duplicate detection is provided in all cases except when the sender or
receiver just reset. In this case, the reset node shall start with
transaction number 0 which may result in a transaction in progress be-
tween the two nodes being acted upon more than once; (iii) partial
ordering—ordering is preserved but a message is not delivered when
delivery fails within the specified number of retries; and, (iv)
immediate re-synchronization—following a network partitioning, the
very first message is delivered.

• Unacknowledged-Repeated Multicast and Unicast. These services differ
from the reliable ones described above only in that no acknowledgment
is expected, and that the message is sent repeatedly until the number of
repetitions is equal to the retry count. When using this service, the
limit of 63 members in a group does not apply—the only limit on the
number of members in a group addressed via this service is the
number of nodes in a domain.

LonTalk protocol groups are symmetric in that every member of the group can both
send and receive.

8.3 Service Interface

For the purpose of the protocol specification it is assumed that the service interface
provided to the Session and Application layers has the form shown in figure 8.1.

Transport Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 44 of 112

Rcv_Message ()

Trans_Completed ()

Send_Message ()

Transport Layer

Figure 8.1 Transport Interface To Upper Layers

The syntax and semantics of the Transport layer interface are:

Send_Message (Address, APDU, priority) -> (TID)

Trans_Completed (TID, Result)

Rcv_Message (APDU)

TID, above, is a unique identifier for the transaction.

8.4 TPDU Types and Formats

TPDU syntax is shown in figure 8.2; the number above each field specifies the field
size in bits. The symbolic field values shown in the picture are mapped onto
numeric ranges (0, 1, 2, 3,) in the order shown. Additional details, such as the
bit/byte transmission order are defined in Appendix A.

Auth
1 3 4

TPDUtype Trans_No

APDU

Null Field
0

ACKD (0)

REMINDER (4)

REM/MSG (5)

APDU

ACK (2)

UnACKD_RPT (1)

Length
24/32/40/48/56/648

M_List

Length
0/8/168
M_List APDU

 Figure 8.2 TPDU Types and Formats

Transport Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 45 of 112

The Acknowledged Message (ACKD) TPDU is used for the first transmission of a
message. It is used with addressing formats #1, #2a, and to a limited extent #3.
Unlike the Unacknowledged message TPDU, it must be acknowledged by all
addressed recipients. This TPDU is used for acknowledged initial TPDUs (both
unicast and multicast) as well as unicast reminders. Multicast reminders are
covered below. Refer to figure 3.2 or Appendix A to review the addressing formats.

The Unacknowledged-repeated Message (UnACKD_RPT) TPDU is identical to its
acknowledged counterpart with one exception: on its reception, no
acknowledgments are returned to the sender. This TPDU is used with no
modifications for the unacknowledged-repeated service. Simple unacknowledged
messages have no TPDU header, and thus have no duplicate detection.

The Message-Reminder (REM/MSG) TPDU facilitates selective soliciting of
acknowledgments for multicast transactions. REM/MSG type 5 is used when the
highest numbered group member from which the sender has received an
acknowledgment is < 16; this TPDU contains both the member list (M_List []) and
the APDU. The length field specifies the size of the M_List field (in bytes); a value
of 0 in M_List [X] indicates that member X’s acknowledgment has not been received
by the sender, whereas a value of 1 indicates that the acknowledgment has been
received. Finally, when Length=0 the M_List[] field is absent and the meaning is
“all members should acknowledge."

Type 4 is a plain reminder , without an APDU (see figure 8.2). It is used in cases
where the highest numbered member that has acknowledged the message is ≥ 16.
Acknowledgments are solicited using the TPDU pair (REMINDER, ACKD) and this
pair is logically equivalent to a single type 5 REM/MSG TPDU used when the
members needing to acknowledge may be encoded within the type 5 format. (A
separate solution is provided for large groups because of the need to limit
maximum TPDU size.)

The Acknowledgment (ACK) TPDU is null. It uses addressing format #2a (unicast
acknowledgment) or #2b (group acknowledgment). The Trans_No field conveys
the transaction being acknowledged.

Any TPDU that requires an acknowledgment can be flagged as an authenticated
packet by setting the Auth bit to ‘1’.

Transport Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 46 of 112

8.5 Protocol Diagram

The diagram in figure 8.3 is intended to augment—but not replace—the protocol
description in sections 8.7-8.8.

sender receivernetwork

Rcv_Message ()

Send_Message ()

Trans_Completed ()

Xmit_Timer
expiry

Xmit_Timer
expiry

msg TPDU

reminder TPDU
msg TPDU

ack TPDU

ack TPDU

reminder TPDU
msg TPDU

Figure 8.3 Transport Protocol Diagram
Multicast with a Loss of Both the Message and the ACK TPDUs

8.6 Transport Protocol State Variables

The Transport protocol consists of two independent functions—Send and Receive.
To support the send function, the Transport layer keeps one Transmit record per
transaction in progress. A shared pool of Receive records facilitates message
reception.

TRANSMIT_Record = record
ACK_Received: array [0..63] of Boolean;
Dest_Count: 0..63; { number of destinations }
ACK_Count: 0..63;
Xmit_Timer: timer;
Retries_Left: 0..15;
priority: one of True/False;
TPDU_ptr: pointer to the TPDU being transmitted;
end;

RECEIVE_Record = record
Source: Unicast address;
Destination: Unicast or Multicast address;
Trans_No: 0..15;

Transport Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 47 of 112

Rcv_Timer: timer;
L4_State: one of (not_delivered, delivered , authenticated, authenticating,

non-authenticated, waiting;
priority: one of {True, False};
checksum: used for authentication
response: byte—used for request/response protocol—Layer 5
end;

8.7 The Send Algorithm

The simplified transmit FSM is shown in figure 8.4, with full details in algorithm
8.7 below. The algorithm resets the re-transmission timer, Xmit_Timer, whenever
an acknowledgment is received, as opposed to once per Expiration period.

Send_Msg() Request:
Send MSG TPDU

(TimeOut & RetriesLeft = 0)
or (Last ACK Rcvd):
Trans_Completed()

ACK TPDU: Reset Xmit_Timer

Xmit TimeOut & (Retries_Left > 0):
Send MSG/REM TPDU

0 1

Figure 8.4 Transport Protocol—Send FSM

 Algorithm 8.7:

Events driving the algorithm:
Send_Message () service request (see 8.3)
TPDU_In ACK TPDU from the Network layer
Xmit_Timer_Expiration timeout of the retransmission timer
Challenged receiver node issued an authentication challenge
AuthPDU_in challenge from receiver node

Outputs:
Trans_Completed () transaction completion indication to the Application layer

State Variables:
XR transmit record for this transaction

begin { algorithm 8.7 }
Case event of

Send_Msg (Address, APDU, priority) -> (TID):
begin
New_Trans (priority)-> (Trans_No) ; {request to the TC sublayer}
Allocate and initialize transmit record XR;
if { addr_type = multicast } then

Transport Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 48 of 112

XR.Dest_Count := {group_size - 1};
else XR.Dest_Count :=1;

 Create MSG TPDU;
Send_Packet (...,TPDU) request to the Network layer—see 6.3;
Start Xmit_Timer;
end;

ACK TPDU Received:
begin

Retrieve the associated Transmit record XR;
Validate (TPDU.priority,TPDU.Trans_no) -> (result) ;
if (result = current) then begin

if (addr_type = multicast) then begin
if (XR.ACK_Received [member] <>1) then begin

XR.ACK_Received[member] := 1;
XR.ACK_Count := XR.ACK_Count + 1;
end;

if (XR.ACK_Count = XR.DestCount)then
Terminate_Trans (XR, Success);

else Restart Xmit_Timer;
end;

end;
end;

end;

Challenged:
begin
Retrieve the associated Transmit record XR;
Validate(AuthPDU_in.priority,AuthPDU_in.Trans_no) -> (result);
if (result = current)then

Reply(XR.Trans_no, AuthPDU_in);
end;

Xmit_Timer_Expiration :
begin
Retrieve transmit record XR;
If (XR.Retries_Left = 0) then

if (XR.TPDU_ptr.TPDUtype <> UnAckd_RPT) then
Terminate_Trans (XR, Failure);

else Terminate_Trans(XR,Success);
else begin

XR.Retries_Left := XR.Retries_Left - 1;
Start Xmit_Timer;
if (addr_type = multicast) then begin

Depending on max member # ack’d, compose MSG/REM TPDU or (REM, MSG) pair;
Send the MSG/REM TPDU or the (REM,MSG) pair;

else begin
Send the initial packet pointed to in XR.TPDU_ptr;
end;

end;
end;

end;
end case;

Transport Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 49 of 112

Procedure Terminate_Trans (XR, status);
begin
provide Trans_Completed (TID, status) indication to the Application layer;
Trans_Done (XR.TPDUptr.priority, XR.Trans_No);
de-allocate XR;
end;

end { algorithm 8.7 };

8.8 The Receive Algorithm

Message reception uses the timer-based mechanism. Figure 8.5 shows the receive
FSM for a single transaction, while algorithm 8.8 specifies full details.

MSG or MSG/REM TPDU:
Send ACK TPDU
uMSG TPDU: nil

REM or MSG/REM TPDU:
Send ACK TPDU

delivered

Rcv_Timer expires: nil
uMSG TPDU: nilREM TPDU: nil

0

Figure 8.5 Transport Protocol—Receive FSM

 Algorithm 8.8:

Input:
TPDU_in a TPDU received from the Network layer
Timer Expiration of Rcv_Timer in Receive_Record
AuthPDU_in Reply to authentication challenge issued by transaction initiator

Outputs:
ACK TPDU to the remote Transport entity
Rcv_Message () indication to the Application layer

State Variables
RR pool pool of Receive Records

begin { algorithm 8.8 };
case event of:

TPDU_In:
Process_TPDU(TPDU_in, priority)

Rcv_Timer Expiration (RR):
De-allocate receive record RR;

Transport Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 50 of 112

De-allocate authentication record if Authrcd.TID = RR;
end case ;

Procedure Process_TPDU (TPDU_in, priority);
var result: integer;
begin
Retrieve the associated RR (RR = nil if none exists);
if (RR <> nil)then begin

Compare (RR.Trans_No, TPDU_in.Trans_No) -> (result);
if (result <> duplicate)then

Reset Rcv_Timer;
end

else begin
Allocate and initialize a RR by assigning:

RR.Source := TPDU_in.src_addr;
RR. Trans_No := TPDU_in.Trans_No;
RR.L4_State := not_delivered;
RR.Priority := priority
RR.Destination := {initialize destination multicast or unicast address};
Start Receive Timer;

end;

case TPDU_in.TPDUtype of

ACKD, UnACKD_RPT:
begin
if (RR.L4_State <> delivered)then

if (auth = True)then
Initiate_Challenge (RR, TPDU_in) ; {algorithm 9.11 }

else begin
provide Rcv_Message () indication to the Application layer;
RR.L4_State := delivered;
end;

if (TPDUtype = ACKD) and (RR.L4_State = delivered)then
Compose and send ACK TPDU;

end;

REMINDER, REM/MSG:
begin
int temp;

if (RR.L4_State <> delivered) then
if (auth = True) then

Initiate_Challenge (RR,TPDU_in) ; {algorithm 9.11 }
else begin

provide Rcv_Message () indication to the Application layer;
RR.L4_State = delivered;
end;

if (TPDUtype = ACKD)then
if (RR.L4_State = delivered) then begin

if (TPDU.Length <> 0)then begin
temp = my_member_no / 8 + 1; {integer math with truncation };

Transport Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 51 of 112

if (temp ≤ TPDU.Length) then
if (TPDU_in.M_List [my_member_no] = 0) then begin

compose and send ACK TPDU;
end;

else begin
compose and send ACK TPDU;
end;

end;
end;

end;

AuthREPLY:
begin

Process_Reply(RR, AuthPDU_in); { algorithm 9.11}
provide Rcv_Message () indication to the Application layer;
RR.L4_State = delivered;

end;

end case;
end procedure;

end { algorithm 8.8 };

8.9 RR Pool Size and Configuration Engineering

Space for the Transport protocol variables defined in section 8.6 is allocated at the
time the application program is linked with the protocol code. With the exception
of the Receive Record (RR) pool, these variables are of fixed size, and consequently
no engineering decisions have to be made regarding how many of each size to
allocate. The size of the RR pool limits the number of concurrent receive
operations on a node ("concurrent” means concurrent within the context of
Rcv_Timer) and should be engineered according to the number of concurrent
transactions expected within the receive timer interval.

8.10 Number of Retries

The number of retries should be large enough to ensure that message delivery is
successfully completed with acceptable probability, e.g., ≥ 99%.

If the delivery probability of a single attempt is p, then the probability that message
delivery within a group of n succeeds in ≤ k attempts is shown in table 8.1 below. (It
is assumed that the single attempt probability p is the same for all destinations.)

Transport Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 52 of 112

P {≤ k retries} =

k ≥ 0, n ≥ 2

P {no retry} = (1–p)
n

p
i
 (1–p)

k–i+1
 (1–p)

n–1∑
i=0

k
k+1

i()

Table 8.1 Probability of Delivery

Note: For a single channel p = 1 - (1/2w + pe), where w is the size of the
MAC layer randomizing window and pe is the probability of packet
loss because of a transmission error.

The above probabilities are tabulated in graph 8.1. Given a group size and the error
probability p, the required number of retries for, say 99.5% probability of success, can
be read off the graph.

Number of Retries

P
ro

b
ab

il
it

y
o

f
S

u
cc

es
s

0

0.1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

0 1 2 3 4 5

2 4 8 1 6

3 2 6 4 Group Size

Graph 8.1 Probability of Transaction Completion in k Retries
for a Single Channel Without Priority Messages

However, pragmatic considerations must be also included in any real system
design. For example, there is no need for a large number of retries with transactions
that are repeated periodically. Additionally, when the acknowledgments to a
multicast message would take up a significant percentage of the bandwidth of the
channel, it is more likely that a message will be properly delivered using the

Transport Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 53 of 112

“unacknowledged-repeated” service rather than the acknowledged multicast ser-
vice. In practice, it is expected that a Retry_Count in the (2..5) range will cover most
situations.

8.11 Choice of Timers

There are three timers used by the Transport protocol. They are the:

Xmit_Timer the layer 4 retransmission timer
Repeat_Interval_Timer the UNACKD_RPT interval timer
Rcv_Timer the receive record timer (see 8.6, 8.9)

Xmit_Timer is reset on every ACK TPDU or Authentication challenge reception,
while Rcv_Timer is reset whenever a MSG or MSG/REM TPDU that has a new
transaction number is received for this destination. The Repeat_Interval_Timer
determines the interval between the UNACKD_RPT packets sent by the sender.
The recommended methodology for calculating the timer values is shown in table
8.1. These recommendations are for a single channel. For multichannel networks,
the calculation depends upon the speed of the router and the number of buffers.
Empirical measurements with LONWORKS routers show about 4 ms of delay across
a router with the default buffering and with both sides running at a 10 MHz input
clock rate. Since buffering and clock rates are adjustable, the system designer must
make some measurements to create an actual network configuration (unless it is
the one just mentioned).

Retry Count = 2-5
Xmit_Timer ≥ 3* packet cycle time+margin
Rcv_Timer ≥ Xmit_Timer * (Retry_Count+2)

(see section 8.10 and graph 8.1)

(margin = best case tx completion time)

Where “3* packet cycle time” assumes that the average station on the channel must wait two packet
cycles of delay to access the network. Then, following network access, the transmission time of
the average packet (also the packet cycle time) is added to the timer value. Finally, the time
it takes the receiver to process the packet and send the acknowledgment is added. This is a
function of the clock speeds of the associated nodes.

Table 8.1 Methodology for Calculating Timer Values

Session Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 54 of 112

 9. SESSION LAYER

9.1 Assumptions

The Session sublayer makes no assumptions apart from relying on the Transaction
Control sublayer for correct SPDU sequencing and duplicate detection.

9.2 Service Provided

The Session layer provides a single service:

• Request-Response. This service facilitates application communication
similar to a remote procedure call. In particular, it allows a client to make
a request to a remote server and receive a response to this request.

Non-idempotent transactions are to be executed “at most once” (i.e.,
exactly once or not at all). Non-idempotent transactions are those where
the action depends on a prior state, such as “open the valve an additional
10%.” The protocol considers a transaction to be non-idempotent if and
only if its response length is ≤ 1 byte.

Requests with response length > 1 byte are considered idempotent ; such
requests may be executed “several times” (i.e., zero or more times).
Idempotent transactions are those where the action may be repeated any
number of times, and the effect is the same. An example of an idempo-
tent command is “read the first 10 table values”.

The distinction between idempotent and non-idempotent transactions is
based upon the size of the response, in order to limit the amount of
storage required for transaction records within a node. If a transaction
has a response length > 1 byte but may not be executed more than once, it
is the responsibility of the application to save the response and send it
again. This is facilitated by the session layer in that notification that the
request is a duplicate is provided to the application layer by the session
layer.

A request-response transaction fails unless the server response is gener-
ated within the limit imposed by the Request-Response timers and re-
transmissions (see 9.10).

9.3 Service Interface

For the purpose of this protocol specification it is assumed that the service interface
to the application layer has the form shown in figure 9.1.

Session Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 55 of 112

Session Layer

Server Interface

Trans_Completed ()

Client Interface

Send_Request ()

Partial_Response ()

Rcv_Request () Send_Response ()

Figure 9.1 Session Layer Interface

The syntax of the service interface primitives is given below. TID is a unique
identifier for the transaction (section 7.5 provides implementation details).
Duplicate is a boolean that, when true, indicates that the client is retrying a
previously executed request.

Send_Request (Address, APDU, priority) -> (TID) { client }
Partial_Response (TID, APDU, priority)
Trans_Completed (TID, Result)

Rcv_Request (TID, APDU, duplicate, priority) { server }
Send_Response (TID, APDU, priority)

9.4 Internal Structure of the Session Layer

The LonTalk Session sublayer is internally structured as shown in figure 9.2.

R-R Protocol
(Client Part)

R-R Protocol
(Server Part)

to/from Application Layer

to/from Network Layer

Reply

Process
Reply

Authentication
Server

Initiate
Challenge

to/from Network Layerto/from Transport Layer

to/from Application Layer

Session Sublayer

Figure 9.2 Session Sublayer—Internal Structuring

Session Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 56 of 112

The Request-Response protocol accesses the Authentication server via the
following three calls(details in 9.10). The transport layer also accesses the
Authentication server with the same three calls.

Initiate_Challenge(RR,PDU) -> (null) { challenger }
Reply(XR, PDU)-> (null) { challengee }
Process_Request(RR,PDU) -> (pass/fail); { challenger }

9.5 SPDU Types and Formats

SPDU formats are shown in figure 9.3, where the number above each field specifies
the field width in bits. The symbolic values shown in the picture are mapped onto
numeric ranges (0, 1, 2, 3, ...) in the order shown.

Auth
1 3 4

SPDUtype Trans_No

CHALLENGE (0)

REPLY (2)

RandomBytes
64

Group
8

64
CryptoBytes Group

8
4

Trans_No
2

FMT AuthPDUtype
2

same as AddrFmt

Authentication PDU

SPDU

present only
if FMT = 1

REQUEST (0)

REMINDER (4)

REM/MSG (5)

Length
8

Length
0/8/168
M_List

M_List

RESPONSE (2)
24/32/40/48/56/64

APDU

APDU
8

APDU
8

Figure 9.3 LonTalk SPDU Types and Formats

The Request-Response protocol uses three basic PDU types: Request (REQUEST),
Response (RESPONSE), and combined Request-Reminder (REM/MSG). The syntax
(packet layout) and semantics (packet processing) of these three basic SPDU types
correspond closely to that of ACKD, ACK, and REM/MSG TPDUs.

The Request (REQUEST) SPDU is used with the first transmission of the request. It
employs addressing formats #1, #2a, and to a limited extent #3 and #0. Address
format #0 is used by a special network management command to broadcast a

Session Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 57 of 112

request searching for any nodes that have not been configured. Address format #3 is
then used to configure those nodes that respond to this special network
management command.

The Request-Reminder (REM/MSG) SPDU facilitates selective soliciting of
responses. REM/MSG type 5 is used in groups where the highest member number
needing to acknowledge is < 16; this SPDU contains both the member list (M_List [])
and the APDU (i.e.., the request itself). The Length field specifies the size of the
M_List field (in bytes); a value of 0 in M_List [X] indicates that member X’s response
has not been received by the requester, whereas a value of 1 indicates that the
response has been received.

Type 4 is a plain reminder, without a request (see figure 9.3). It is used where the
highest member number needing to acknowledge the reminder is ≥ 16; in this case,
responses are solicited using the SPDU pair (REMINDER-type 4, REQUEST-type 0)
and this pair is logically equivalent to a single type 4 REM/MSG SPDU used i n
small groups. (A separate solution is provided for large groups because of the need
to limit maximum SPDU size.) Finally, when Length = 0 the M_List[] field is absent
and the meaning is “all members should acknowledge."

The Response (RESPONSE) SPDU uses addressing format #2a (unicast acknowledg-
ment) or #2b (group acknowledgment). The Trans_No field conveys the transac-
tion being acknowledged. The length of the APDU implicitly defines the type of
transaction: if the response can be stored in a single byte, the transaction is treated as
non-idempotent. Otherwise the transaction is treated as idempotent.

Authenticated SPDUs (Auth bit set to ‘1’) identify requests that are to be authenti-
cated by the recipient. In all other respects, they are identical to the SPDUs which are
not authenticated.

Authentication . The authentication server is available to the transport and session
layer protocols. It provides a one-way authentication service. It is the client’s
responsibility to initiate authenticated transactions when required. This is done by
setting the Auth bit in the SPDU or TPDU. When a TPDU or SPDU is received with
the Auth bit set, the server shall challenge using the “challenge” AuthPDU. The
client then computes a transformation based upon the server's challenge, the
original APDU sent by the client, and the client’s authentication key. The result of
this transformation is sent to the server using the “reply” AuthPDU. When the
server receives the reply, its contents are compared to the transformation computed
by the server. If they match, the transaction is authenticated. In all cases the
SPDU/TPDU is passed to the application layer for processing along with notification
as to whether the authentication failed or succeeded. Note that if the application
layer on the server node has no requirement for authentication of the particular
transaction, it may choose to honor the request even if the authentication failed. If
the application layer chooses not to honor the request, it simply discards the APDU
without further processing.

Session Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 58 of 112

9.6 Protocol Timing Diagrams

The protocol timing diagrams in figures 9.4 (a) and (b) are intended to provide an
intuitive feeling for the session layer protocols and to augment (but not to replace)
the protocol specification in sections 9.7-9.13. Note again that for needed
acknowledgments from group member numbers < 16, the REM/MSG SPDU is used
and is functionally equivalent to the (REMINDER, REQUEST) pair.

client network

Send_Request ()

Trans_Completed ()

Xmit_Timer
expiry

Xmit_Timer
expiry

request SPDU

reminder SPDU
request SPDU

response SPDU

Rcv_Request ()

Send_Response ()

Partial_Response ()

reminder SPDU
request SPDU

Figure 9.4 (a) Non-Idempotent Request with Multiple SPDU Losses

Session Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 59 of 112

reply AuthPDU

reply AuthPDU

challenge PDU

serverclient network

Send_Request ()

Xmit_Timer
expiry

Xmit_Timer
expiry

request SPDU

reminder SPDU
request SPDU
reminder SPDU
request SPDU

can’t get
authentication record

initialize authentication
record

reminder SPDU
request SPDU

Initiate_Challenge ();
compute C (SPDU.APDU)

authentication already
in progress… reissue

Initiate_Challenge ()

Send_Reply () reply AuthPDU

reminder SPDU

compute E ()

Xmit_Timer
expiry

if reply = E ():
 Rcv_Request ()
 Send_Response ()

Trans_Completed ()

reply AuthPDU

Partial_Response ()

reminder SPDU
reply AuthPDU

Xmit_Timer
expiry already authenticated…

if (idempotent &
 C(SPDU) matches)
 reprocess request
else
 send stored response

Xmit_Timer
expiry

challenge PDU

authentication already
in progress… reissue

Initiate_Challenge ()

Send_Reply ()

compute E ()

 Figure 9.4 (b) Secure Idempotent Request with Multiple SPDU Losses

Session Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 60 of 112

9.7 State Variables

Like the Transport protocol, the Request-Response protocol maintains one
Transmit record per transaction in progress, and a shared pool of Receive records
facilitates message reception. As shown below, these records differ in minor details
from those used by the Transport protocol.

TRANSMIT_Record = record
ACK_Received: array [0..63] of Boolean;
Dest_Count: 0..63; { number of destinations }
ACK_Count: 0..63;
Xmit_Timer: timer; { implementation dependent }
Retries_Left: 0..15;
SPDU_ptr: pointer to the SPDU being transmitted;
priority: one of True/False;
Linked_Trans: TID of a receive transaction in suspended state;
end;

RECEIVE_Record = record
Source: Unicast or Multicast address;
Destination: Unicast or Multicast address
Trans_No: 0..15;
Rcv_Timer: timer; { see section 7.10 }
L5_state: one of {nil, executing, done1, done2}
priority: one of True/False;
Reply_type: one of (application, netmgmnt, netdiagnostic, foreign frame)
Authenticated: one of True/False;
Checksum byte checksum for authentication
Reply: Data; /* valid if and only if L5_State = done1 */
end;

9.8 Request-Response Protocol — Client Part

A simplified FSM for the client part of the Request-Response protocol is shown i n
figure 9.5, with the detailed specification following in algorithm 9.8.

Send_Request():
Send SPDU

(TimeOut & RetriesLeft = 0)
or (Last Response Rcvd):

Trans_Completed()

Response SPDU:
Reset Xmit_Timer;

Partial_Resp()

Xmit TimeOut & (Retries_Left > 0):
Send REQ or REQ/REM SPDU

0 1

Figure 9.5 Request-Response Protocol—Client FSM

Session Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 61 of 112

 Algorithm 9.8:

Events driving the algorithm:
Send_Request () from the Application layer
RESP SPDU from the Network layer
Xmit_Timer Expiration timeout of the retransmission timer
Challenged authentication challenge received from remote server
AuthPDU_in

Outputs:
Partial_Response () indication to Application layer
Trans_Done () indication to Application layer

State Variables:
XR transmit record for this transaction

begin { algorithm 9.8 }

Case event of
Send_Request (Address, APDU, priority) -> (TID):

begin
New_Trans (priority) -> (Trans_No); {request to the TC sublayer}
Allocate and initialize transmit record XR;
if {addr_type = multicast } then

XR.Dest_Count := {group_size - 1};
else XR.Dest_Count :=1;
Create Request SPDU;
Make Send_Pkt (...,SPDU) request to the Network layer;
Start Xmit_Timer;
end;

RESP SPDU Received:
begin
Validate (SPDU.priority, SPDU.Trans_No) -> (result);
if (result = current) then begin

Retrieve the associated Transmit record XR;
provide Partial_Response indication () to the Application layer;
if {addr_type = multicast } then begin

if (XR.ACK_Received [member] <>1) then begin
XR.ACK_Received[member] := 1;
XR.ACK_Count := XR.ACK_Count + 1;
end;

if (XR.ACK_Count = XR.DestCount) then
Terminate_Trans (XR, Success);

else Restart Xmit_Timer;
end;

end;
end;

Challenged:
begin

Retrieve the associated Transmit record XR;

Session Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 62 of 112

result := Validate(XR.SPDU_ptr.priority,XR.SPDU_ptr.Trans_no);
if (result = current) then

Reply(XR.SPDU_ptr.Trans_no,AuthChallengePDU); {algorithm 9.11}
end;

end;

Xmit_Timer_Expiration :
begin
Retrieve Transmit record XR;
If (XR.Retries_Left = 0) then

if (XR.SPDU_ptr.SPDUtype <> UnAckd_RPT) then
Terminate_Trans (XR,Failure)

else
Terminate_Trans (XR,Success);

else begin
XR.Retries_Left := XR.Retries_Left - 1;
Start Xmit_Timer;
if {addr_type = multicast} then begin

Depending on max member # ack’d, compose MSG/REM SPDU or (REM, MSG) pair;
Send the MSG/REM SPDU or the (REM, MSG) pair;
end;

else Send the initial packet pointed to in XR.SPDU_ptr;
end;

end;
end case;

Procedure Terminate_Trans (XR, Status);
begin
provide Trans_Completed () indication to the Application. layer
Trans_Done (XR.SPDUptr.priority,XR.SPDU_ptr.Trans_no);
de-allocate XR;
end;

end { algorithm 9.8 };

9.9 Request-Response Protocol — Server Part

A simplified FSM for the server part of the Request-Response protocol is shown i n
figure 9.6, with the full description following. The protocol treats all transactions
with response size > 1 byte as idempotent, implying that it may execute them more
than once. Transactions with response size of only 1 byte are never executed more
than once.

Session Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 63 of 112

Retry

NIL

any state

done 2

executing

Response
= 1 byte

Response
> 1 byte

Rcv_Timer
Expiry

Authenticated
Request

New
Request

Application
Response

Reply

authen-
ticating

Retry

done 1

Retry

delivered

Retry

Reminder

Figure 9.6 Request-Response Protocol—Simplified Server FSM

 Algorithm 9.9:

Input:
SPDU_in Request , Reminder, SPDU for authentication reply from Network

layer
Send_Response () service request from the Application layer
Rcv_Timer Expiration timeout of the Rcv_Timer

Outputs:
Response SPDU to the remote Session entity
Rcv_Request () indication to the Application layer

State Variables:
RR pool pool of Receive Records

begin { algorithm 9.9 }

case event of
SPDU_in:

Process_SPDU;

Send_Response (TID, APDU, priority):
begin
if (APDU.DataLength = 1) then begin

RR.L5_state := done1;
RR.Reply_type := type;

Session Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 64 of 112

RR.Reply := APDU.Data;
end;

else begin
RR.L5_state := done2;
Compose and send response SPDU;
end;

end;

Rcv_Timer Expiration:
begin
case RR.L5_state of

nil, done1, done2:
null;

executing, authenticating:
{lock up receive record and wait for response};

end case;
De-allocate receive record RR;
De-allocate authentication record if Authrcd.TID = RR.
end;

end case;

Procedure Process_SPDU (SPDU_in);
begin
Retrieve the associated RR (RR = nil if none exists);
if (RR <> nil) then begin

Compare (RR.Trans_No, SPDU_in.Trans_No) -> (result);
if (result <> duplicate) then

Reset Rcv_Timer; else if (RR.L5_state = authenticated)then
if (RR.checksum <> C(SPDU_in.APDU)) then begin
RR.Authenticated := False;
end;

end;
else begin

allocate and initialize a RR by assigning:
RR.Authenticated := False;
RR.Source := SPDU_in.src_addr;
RR.Trans_No := SPDU_in.Trans_No;
RR.Priority := priority;
RR.Destination := {initialize according to addressing mode in SPDU_in };
RR.L5_state := nil;
Start Rcv_Timer;
if (SPDU_in.Auth = True) then begin

RR.L5_state := authenticating;
Initiate_Challenge(SPDU_in,RR.Trans_no);
end;

end;
end;

case SPDU_in.SPDUtype of
REQ:

Process_Request (RR, SPDU_in);
REQ/REM: begin

Split SPDU_in into two PDUs: spdu1 (the REM part) and spdu2 (the REQ part);
Process_Reminder (RR, spdu1);

Session Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 65 of 112

if spdu2 <> nil then Process_Request (RR, spdu2);
end;

AuthREPLY:
RR.L5_state := Process_Reply(RR.Trans_no,SPDU_in);

end case;
end procedure;

Procedure Process_Request (RR, SPDU);
begin

case RR.L5_state of
nil:
begin { plain REQ SPDU };

if (SPDU.Auth = True) then
Initiate_Challenge(RR.SPDU);

else begin
provide Rcv_Request () indication. to the Application. layer;
RR.L5_state := executing;
end;

end;
executing, done:

null;
done1:

compose and send RESP SPDU;
done2:

begin { plain Request }
if {authenticated transaction }then

if (C(SPDU.APDU) <> RR.Checksum) then
RR.Authenticated := False;

provide Rcv_Request () indication. to the Application. layer;
RR.L5_state := executing;
end;

end
end case;

end procedure;

Procedure Process_Reminder (RR, SPDU);
int temp;

{identify my member # in the destination group};
if (SPDU.Length <> 0) then begin

temp = my_member_no / 8+ 1; {integer division with truncation };
if (temp ≤ SPDU.Length) then

if (SPDU.M_List [my_member_no] = 1) then { my response received by the requester}
RR.L5_state := done;

end;
end procedure;

end { algorithm 9.9 };

Session Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 66 of 112

9.10 Request-Response Protocol Timers

The two timers—Xmit_Timer and Rcv_timer—used by the Request-Response pro-
tocol follow the function and the form of Transport timers. The recommended
values are identical to those for the transport layer as defined in section 8.11, with
the exception that if the request takes a significant amount of processing time on
the server (relative to the transaction time), that time should be included in the
calculations.

9.11 Authentication Protocol

The Authentication server is accessible by the session layer and the transport layer.
It relies on the duplicate detection mechanism in the transaction control sublayer,
and no other transport layer services. Authentication allows a server to verify the
identity of the requester. Use of this service is controlled by network management
commands, which specify the messages/network variable exchanges to be
authenticated.

The Authentication protocol has two asymmetric parts: the challenger and the
challengee. The authentication process is initiated by the challenger, which gener-
ates a random number X; next, the challengee responds with Y = E(X, msg), an
encryption of X and the original message using a private key; and finally the chal-
lenger compares Y with its own version of E(X, msg), and makes a pass/fail decision
based on the outcome of the comparison. The Authentication algorithm described
below defines both the challenger and the challengee functions. All the server calls
are synchronous.

 Algorithm 9.11:

Inputs and Outputs:
Initiate_Challenge(RR,PDU) challenger server call
Reply(XR,PDU) challengee server call sends reply to challenger
Process_Reply(RR,PDU) ->(result) challenger server call—result is pass or fail

State Variables:
Authen_rcd a record used for the random number and client’s APDU
RR Receive record
XR Transmit record

begin { algorithm 9.11 };

case event of

Initiate_Challenge(RR, PDUptr) :
begin

{get receive transaction record (RR) from TID, PDUptr}:
if (Authen_rcd.TID = nil)then begin

Authen_rcd.TID := TID; {reserve authentication record }

Session Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 67 of 112

RR.state := authenticating;
Authen_rcd.ptr :=PDUptr;
Authen_rcd.rand := rand(); { generate 8 byte random number }
RR.checksum := C(PDUptr); { encryption of initiating APDU algorithm 9.13}
compose AuthPDU challenge using 8 byte random number and issue Send_Packet()

else if (Authen_rcd.TID=TID) then {retry the challenge }
compose AuthPDU challenge using 8 byte random number and issue Send_Packet()

else
RR.state := waiting; { could not allocate authentication record }

end;

Reply (XR,Challenge_PDU) :
begin

if Validate(Challenge_PDU.priority, TID) = current then begin
compute E(Challenge_PDU.RandomBytes, XR.TPDU_ptr.APDU) {algorithm 9.12}
compose Auth PDU reply using result of E() and issue Send_Packet()

end;
end;

Process_Reply (RR, PDU) -> (result):
begin

if Validate(PDU.priority, RR.Trans_no) = current then begin
test := E(Authen_rcd.rand, Authen_rcd.ptr.APDU);
if (test = PDU.CryptoBytes)then begin

result := pass;
RR.authenticated := True; {notification to application layer }
end;

else begin
result := fail;
RR.authenticated := False;
end;

end;
end;

end case;
end { algorithm 9.11 } ;

9.12 Encryption Algorithm

The LonTalk encryption algorithm facilitates one way encoding rather than real
encryption. It uses a 48-bit encryption key K, a variable length APDU, A[len], and a
64-bit input string R to produce a 64-bit output string Y. Desirable properties of the
random number R are defined in 9.14. Any 48-bit number is a valid encryption key.

The encryption function is not published in this version of the specification.
Echelon has obtained expert advice on one way encryption functions. The advice is
that it is impossible to prove beyond any doubt that a function has no inverse.
Those who have seen the function as of June, 1994 believe it has no inverse, but
Echelon has been advised that it is more secure if it is not published. Nevertheless,
Echelon has, and shall continue to make the function available on a need to know
basis provided that there is written agreement to keep the function confidential.

Session Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 68 of 112

 Algorithm 9 .12:

Input:
R: array [0..7] of (0..255); input string ("plain text")
A: array [1..240] of (0..255); APDU

Output:
E: array [0..7] of (0..255); E = E (R,A) ("cipher text")

State variables:
K: array [0..5] of (0..255); encryption key

begin { algorithm 9.12 }:

Procedure E (R,A);
begin

end { algorithm 9.12 };

9.13 Retries and the Role of the Checksum Function

The checksum function is used for validating APDUs in client retries. The client
shall retry if any of the original message, the challenge, the reply, or the
acknowledgment/response is lost. Upon receiving a retry, the action taken by the
server is a function of the transaction state as follows:

waiting the server is waiting for the authentication record. In
this case, the server shall attempt to allocate the
record again;

authenticating the server has issued a challenge and is waiting for a
reply. In this case, the server simply reissues the
same challenge (with the same random number);

authenticated the authentication exchange has completed, with
successful verification. If the original message was
acknowledged, then the acknowledgment is reissued
and the retry is discarded. If the original message was
a request of an unknown type, then it is assumed
that the application is still composing the response,
so the retry is discarded. If the original message was a
non-idempotent request, the response is reissued
and the retry is discarded. If the original message was
an idempotent request, then the retry APDU is en-
crypted using the checksum function C(). The result

Session Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 69 of 112

is compared with that saved from the original
message. If they do not match, the retry is marked as
not authenticated. In any case, the retry is delivered
to the application;

not authenticated the authentication exchange has completed without
successful verification. The action taken is much like
that for the “authenticated” state, except no encryp-
tion/comparison is done for idempotent requests.

 Algorithm 9.13:

Procedure C(PDU) ->C[3]; {yields a 3 byte checksum}
var R[8]; { 8 byte work space}
begin {algorithm 9.13}

R := E(K,PDU.APDU); { K is the 6 byte encryption key ; E() is algorithm 9.12}
C[0] := R[0];
C[1] := R[4];
C[2] := R[7];

end; {algorithm 9.13}

9.14 Random Number Generation

The random number generator used by the authentication protocol has the follow-
ing properties:

(i) R, the number generated need not be mathematically random but it
must be truly unpredictable; this means that the generator period
should be as long as possible;

(ii) The generator does not generate predictable values after events such as
power failure or rebooting.

9.15 Using Authentication

The LonTalk authentication scheme must be correctly used to provide maximum
security. One problem of which the user should be aware is the transportation of
authentication keys in the open using a network management command. This
problem can be overcome by using the increment authentication key network
management command rather than the network management command which
provides an absolute value for the key.

Application Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 70 of 112

 10. PRESENTATI ON/APPLICATION LAYER

10.1 Assumptions

The Application protocol makes no assumptions apart from relying on the
Transaction Control sublayer for correct TPDU/SPDU sequencing and duplicate
detection. The provided functions of the presentation layer are specified as a part of
the APDU header. In particular, when the APDU header indicates that the APDU is
a network variable update, the header has presenation information encoded within
it because it tells the node how to interpret the APDU data.

10.2 Service Provided

The Presentation/Application layer provides 5 services:

• Network Variable Propagation. This service sends messages which are
interpreted by the receiver(s) as a network variable updates. If the
receivers are using the LONWORKS application programming model,
these network variable updates are handled for the application in a
special way. See the Neuron C Programmer's Guide; A special two byte
header is used to convey the presentation layer information that the
APDU is to be interpreted as a network variable.

• Generic Message Passing. An application may construct an arbitrary
message, addressed using any of the addressing modes;

• Network Management Messages. These messages are described in detail
in chapter 11;

• Network Diagnostic Messages. These messages are typically initiated by
a network management tool to test which nodes are fully operational,
and to take corrective action around problem areas. These messages are
described in detail in chapter 11;

• Foreign Frame Transmission. These messages originate external to the
LonTalk environment, and are destined for nodes also external to the
LonTalk environment. This function is provided as a means to use the
LonTalk protocol as a gateway between two such external nodes, or to
tunnel other protocols through the LonTalk protocol.

10.3 Service Interface

For the purpose of this protocol specification it is assumed that the service interface
to the application program has the form shown in figure 10.1.

Application Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 71 of 112

msg_send()

msg_cancel() msg_receive()

resp_send()

resp_cancel()

resp_receive()msg_free()msg_alloc()

msg_alloc_priority() resp_alloc()

resp_free()

Application Layer

msg_completes()

Figure 10.1 Application Layer Interface

The syntax of the service interface primitives is given below. Most of the service
primitives require no parameters. Instead they operate on the data structures
msg_out, msg_in, resp_out and resp_in.

msg_alloc() -> (true/false)
msg_alloc_priority() -> (true/false)
msg_send(msg_out)
msg_cancel()
msg_free()
resp_alloc() -> (true/false)
resp_send(resp_out)
resp_cancel()
resp_free()
msg_receive(msg_in)
resp_receive(resp_in)
msg_completes() -> (failed, succeeded, completed)

10.4 APDU Types and Formats

The APDU consists of a header followed by the application data. The header is a
single byte which is followed by a second byte only if the header specifies that
network variable information is to follow. The data structure for the APDU is
given below:

struct message
{

int destin_type;
int data[];

}

where data is an open ended array and destin_type is one of the following:

00xxxxxx generic application message (64 codes)
1dxxxxxx a network variable message; “d” indicates direction: 1 for

outgoing, 0 for incoming. The remaining code bits are

Application Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 72 of 112

combined with the first data byte to form a 14 bit network
variable selector.

011xxxxx a network management message (32 codes)
0101xxxx a diagnostic message (16 codes)
0100xxxx foreign frame (16 codes)

The rest of the APDU is defined with the first byte received as leftmost and the last
byte received as rightmost. Any long or quad quantities stored in the APDU are
stored with the most significant bit on the left. Arrays are stored with the lowest
numbered element on the left. Structure fields are also stored left to right. Every
LonTalk node must be able to receive, as a minimum, an APDU of 16 bytes of data
plus the destin_type.

The application physical data unit (APDU) has the following format:

APDU
8/16 0 ’ n (maximum APDU length is undefined)

dataDestin&Type

Application

Network Variable

Network Management

Network Diagnostic

Foreign Frame

0 0

0 11

1 d selector

1 = outgoing
0 = incoming

10 01

0 0 01

1 1

1 1

1 1 1

1 1 1 1

1111

14

6

5

4

4

Code

Code

Code

Code

Figure 10.2 LonTalk APDU Format

10.5 Protocol Diagram

The diagram below shows a Non-Idempotent multicast transaction with a loss of
both the initial APDU and the ACK TPDU.

Application Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 73 of 112

sender receivernetwork

msg_receive ()

msg_alloc () or
msg_alloc_priority ()

msg_completes ()

ack TPDU

ack TPDU

REM/MSG APDU

msgAPDU

msg_send ()

REM/MSG APDU

msg_free ()

Figure 10.3 Application Protocol Diagram

sender receivernetwork

msg_alloc () or
msg_alloc_priority ()

msg_completes ()
resp_free()

resp APDU

resp APDU

REM/MSG APDU

msgAPDU

msg_send ()

REM/MSG APDU

msg_receive () ->
duplicate = FALSE

resp_alloc()
resp_send()
msg_free()

msg_receive () ->
duplicate = TRUE

resp_alloc()
resp_send()
msg_free()

Figure 10.4 Application Protocol Diagram

Application Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 74 of 112

Figure 10.4 shows an Idempotent Multicast Request/Response transaction with a
Loss of Both the Request and Response

10.6 Application Protocol State Variables

The address format data structures are listed below. These address formats are used
by the msg_out, msg_in, resp_out, and resp_in structures to direct messages to
their destinations.

#define Neuron_ID_LEN 6

typedef enum addr_type { UNBOUND, SUBNET_NODE, NEURON_ID, BROADCAST }
addr_type;

typedef struct group_struct {
unsigned type : 1; /* 1 => group */
unsigned size : 7; /* group size (0 => huge group)*/
unsigned domain : 1; /* domain index */
unsigned member : 7; /* member num */
unsigned rpt_timer : 4; /* unackd_rpt timer */
unsigned retry : 4; /* retry count */
unsigned rcv_timer : 4; /* receive timer index */
unsigned tx_timer : 4; /* transmit timer index */
unsigned group; /* group ID */

} group_struct;

typedef struct snode_struct {
addr_type type; /* SUBNET_NODE */
unsigned domain : 1; /* domain index */
unsigned node : 7; /* node number */
unsigned rpt_timer : 4; /* unackd_rpt timer */
unsigned retry : 4; /* retry count */
unsigned : 4;
unsigned tx_timer : 4; /* transmit timer index */
unsigned subnet; /* subnet ID */

} snode_struct;

typedef struct bcast_struct {
addr_type type; /* BROADCAST */
unsigned domain : 1; /* domain index */
unsigned : 1;
unsigned backlog : 6; /* backlog override value */
unsigned rpt_timer : 4; /* unackd_rpt timer */
unsigned retry : 4; /* retry count */
unsigned : 4;
unsigned tx_timer : 4; /* transmit timer index */
unsigned subnet; /* subnet ID (0 = domain bcast */

} bcast_struct;

typedef struct nrnid_struct {
addr_type type;
unsigned domain : 1;
unsigned : 7;
unsigned rpt_timer : 4;
unsigned retry : 4;
unsigned : 4;

Application Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 75 of 112

unsigned tx_timer : 4;
unsigned subnet;
unsigned nid [NEURON_ID_LEN];

} nrnid_struct;

typedef union msg_out_addr {
addr_type no_address; /* UNBOUND 0 if no address */
group_struct group; /* Defined above */
snode_struct snode; /* Defined above */
nrnid_struct nrnid; /* Defined above */
bcast_struct bcast; /* Defined above */

} msg_out_addr;

/* Typedef for 'msg_in_addr', which is the type of the field 'msg_in.addr' */

typedef struct msg_in_addr {
unsigned domain : 1;
unsigned flex_domain : 1;
unsigned format : 6; /* NOT the 'addr_type' enum. */

/* INSTEAD: 0 => Bcast, 1 => */
/* Group, 2 = > Subnet/Node, */
/* 3 => Neuron-ID */

struct {
unsigned subnet;
unsigned : 1;
unsigned node : 7;

} src_addr;
union {

unsigned bcast_subnet;
unsigned group;
struct {

unsigned subnet;
unsigned

: 1;
unsigned node

: 7;
} snode;
struct {

unsigned subnet;
unsigned nid [NEURON_ID_LEN];

} nrnid;
} dest_addr;

} msg_in_addr;

/* Typedef for 'resp_in_addr', the type of the field 'resp_in.addr' */

typedef struct resp_in_addr {
unsigned domain : 1;
unsigned flex_domain : 1;
struct {

unsigned subnet;
unsigned is_snode : 1; /* 0=>group resp, */

 /* 1=>snode resp */
unsigned node : 7;

} src_addr;
union {

Application Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 76 of 112

struct {
unsigned subnet;
unsigned : 1;
unsigned node : 7;

} snode;
struct {

unsigned subnet;
unsigned : 1;
unsigned node : 7;
unsigned group;
unsigned : 2;
unsigned member : 6;

} group;
} dest_addr;

} resp_in_addr;

struct {
int code; /* message code */
int len; /* length of message data */
int data[]; /* message data */
boolean authenticated; /* TRUE if message was authenticated */
service_type service; /* Service type used to send the msg */
boolean duplicate; /* TRUE if message is a duplicate */
unsigned rcvtx; /* index to the transaction record */
msg_in_addr addr; /* destination address (see above) */

} msg_in;

struct {
boolean priority_on; /* TRUE if a priority message */
msg_tag tag; /* to correlate completion codes */
int code; /* message code */
int data[]; /* message data */
boolean authenticated; /* TRUE if to be authenticated */
service_type service; /* service type used to send the msg*/
msg_out_addr dest_addr; /* destination address (see above) */

} msg_out;

struct {
int code; /* message code */
int len; /* message length */
int data[]' /* message data */
resp_in_addr addr; /* destination address (see above) */

} resp_in; /* struct for receiving responses */

struct {
int code; /* message code */
int data[]; /* message data */

} resp_out; /* structure for sending responses */

Application Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 77 of 112

10.7 Interactions Between the Offline State and Request - Response

When using the request/response mechanism either explicitly, or implicitly as with
a network variable poll, it is possible to issue a request to a node where the
application program is offline, and thus unable to respond. When this condition
occurs, what happens depends on whether the response is to a network variable
poll or to any other message. If the response is to an application message, the
destin_type in the APDU shall be set to 63. When the response is to a foreign frame,
the destin_type in the APDU shall be set to 79. When the response is to a network
variable poll the response shall contain the network variable selector, but shall not
have any associated data. This is also the response received if one attempts to poll a
network variable on a node which has no matching selector.

10.8 Error Notification to the Application Program

Regardless of whether the application program is using network variables or
sending messages, it always has available to it the status of the last transaction.

10.8.1 Error Notification for Messages

Messages have three events associated with them: completion, success, or failure.
Completion means that the transaction has completed (either successfully or not).
For acknowledged transactions, success is defined as all acknowledgments having
been received. For request/response transactions, success is defined as a response
having been received from all of the intended recipients. In this case, it is up to the
application to check the response code to see that the intended node was not offline.
For unacknowledged transactions, the transaction succeeds when the transaction
completes (when the message is sent). For unacknowledged-repeated transactions
the transaction completes and succeeds when the message has been sent the
requested number of times.

Unacknowledged transactions never fail. Acknowledged transactions provide
failure notification to the application when the expected number of
acknowledgments are not received. Request-response transactions fail when one or
more of the responses are not received.

10.8.2 Error Notification for Network Variables

For network variables, the completion event is posted when the transaction
completes. This is identical to messages. Again, as with messages, unacknowledged
updates never post a failure event. For acknowledged network variable updates,
success is defined as all expected acknowledgments having been received. Failure is
then defined as one or more expected acknowledgments not being received.
Network variables always use the request-response mechanism when they are

Application Layer

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 78 of 112

polled. Polled network variable updates succeed when all of the values have been
returned by the target nodes. A failure event is posted to the application when
either: 1) all of the responding targets did not have valid data (no matching
network variable or offline), or 2) one or more of the expected responses did not
arrive.

Network Management and Diagnostics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 79 of 112

 11. NETWORK MANAGEME NT AND DIAGNOSTICS

11.1 Assumptions

Network Management and Network Diagnostic (NM/ND) protocols are application
level protocols running on top of the Session layer. This means that network
management and diagnosis is only possible when the Session layer (and all the
underlying layers) are functioning properly.

NM/ND operations interact intimately with the network nodes, and their precise
semantics are somewhat node dependent. To facilitate explanation, therefore,
reference is made to the Neuron Chip implementation in this section, although it is
necessary for non-Neuron Chip hosts to process some of these NM/ND commands
when using Neuron Chips as communications chips.

With a few exceptions, all NM/ND commands either examine or modify memory
locations in one fashion or another. A portion of the various data elements that
reside in EEPROM, such as address assignment, are supported with their own
NM/ND commands for reporting and updating, allowing a more controlled
execution of these operations within the Neuron Chip. Other areas can be read or
written using special addressing modes of the read and write memory commands.
Thus, users of move and change types of commands need not concern themselves
with the physical layout of the EEPROM. Those needing to download applications
must understand the physical layout of EEPROM (although even this information
can be wholly contained within a download file).

11.2 Services Provided

The Network Management and Diagnostics application supports the following
services:

• Address Assignment: the assignment of all address components (with
the exclusion of the Neuron_ID);

• Node Query: the querying of node status and essential statistics;

• Configured router table maintenance.

With a few minor exceptions, network management operations are implemented
as remote procedure calls on top of the underlying request-response service
provided by layer 5. Sections 11.4 and 11.5 specify the details.

Network Management and Diagnostics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 80 of 112

11.3 Network Management and Diagnostics Application Structure

The Network Management application is a distributed application with multiple
clients and multiple servers. Server functions must be supported on all nodes,
whereas client functions need only be supported on nodes used as network
management devices.

11.4 Node States

A Neuron Chip can be in one of four states. These states are maintained i n
EEPROM and have the values listed in parenthesis after the state name. These
states are reported in the response to the Query Status network diagnostic
command (see 11.8.1).

Applicationless: (3) no application yet loaded, application in process of being loaded,
or application deemed bad due to application checksum error or signature inconsis-
tency. No application runs in this state. The service LED (a diagnostic aid optionally
available in Neuron Chip-based nodes) is on continuously.

Unconfigured: (2) application loaded but configuration either not loaded, being
reloaded, or deemed bad due to configuration checksum error. A program can make
itself unconfigured by calling the “go_unconfigured()” function. It is determined by
the program whether or not an application runs in this state. The service LED
flashes at a one second rate.

Hard-offline: (6) application loaded but not running. The configuration is
considered valid in this state; the network management authentication bit is
honored. The service LED is off.

Configured: (4) normal node state. The application is running and the
configuration is considered valid. This is the only state in which messages for the
application layer are received. In all other states, they are discarded. The service LED
is off.

The configured state has an additional modifier which is the online/offline condi-
tion. This condition is not maintained in EEPROM. The states and online/offline
condition are controlled via different mechanisms. However, they are reported
together in the status command.

Note that there is a subtle distinction between being in the configured or unconfig-
ured states and being configured or unconfigured. A node in the configured or
unconfigured state is as described above. However, a node is referred to as config-
ured if it is either in the hard offline or configured states (having valid
configuration in either case). A node is referred to as unconfigured if it is either i n
the applicationless or unconfigured states (no valid configuration in either case).

Network Management and Diagnostics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 81 of 112

11.5 Using the Network Management Protocol

Most Network Management PDUs (NMPDUs) are conveyed within Session layer
requests and/or responses. By default, an NMPDU inherits either the request or the
response attribute of the enveloping SPDU. However, some requests, such as
Query_ID (), are conveyed within NPDUs rather than SPDUs.

When configured to do so, most NM/ND transactions must be authenticated i n
order to take effect. Authentication is not possible for messages which are addressed
using Neuron ID addressing where the server is not in the same domain as the one
that the client used to initiate the request. Commands which do not require
authentication to be executed are so noted.

11.5.1 Addressing Considerations

The transmit transaction timer value of the client node must be extended to handle
the lengthy delays involved with any command that alters EEPROM. When
Neuron ID addressing is used, the server node automatically extends the non-group
receive transaction timer to about 8 seconds. This allows this timer to be tuned for
normal application traffic without concern for lengthy network management
transactions.

The recommended addressing mode for initially using these commands on a node
is Neuron_ID. Once the node has been assigned an adequate non-group receive
timer value (for duplicate detection) and a domain, subnet, and node field then
subnet/node addressing is recommended.

Neuron ID addressed messages are received regardless of the domain in which they
are sent. Unconfigured nodes shall also accept any subnet or domain wide broadcast
regardless of the domain. In both of these cases, acknowledgments and responses
are returned on the domain in which the message was received with a source
subnet/node pair of 0/0. Messages received in a domain in which the node is not a
member (either because the node is unconfigured or not in the domain) are termed
as being received on a flexible domain. Some commands are not permitted under
these circumstances and are noted below.

A significant advantage of using Neuron ID addressing for network management
commands is that if a node accidentally becomes unconfigured (e.g., due to a
checksum error resulting from a power failure while changing configuration), the
network management tool does not lose its ability to communicate with the node.

11.5.2 Making Configuration Changes

The paradigm for making configuration changes is as follows:

Network Management and Diagnostics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 82 of 112

1. Alter the node state or condition (optional);
2. Perform the change or changes;
3. Update the configuration checksum (only necessary if not done in step 2);
4. Return to step 2 if more needs to be done;
5. Restore the node state or condition if changed in step 1;
6. Reset the node if communication parameter changes were made and it is

desired that they take effect.

11.5.3 Downloading An Application Program

The paradigm for downloading applications is as follows:

1. Take the node offline;
2. Alter the node state to applicationless;
3. If node went bypass offline1 (in step 1), reset the node;
4. Perform a sequence of write memory commands to load the application;
5. Reset the node2

6. Compute the application checksum.
7. Enter the unconfigured state.

At this point, the configuration can be loaded. Note that when loading an
application followed by loading of the configuration, a node comes up in the offline
condition.

11.5.4 Error Handling Conditions

There are several classes of errors worth considering:

Transaction Failures: If a transaction fails (i.e., the desired acknowledgment or
response is not received), it is best to attempt to get to a known state rather than
simply retry the transaction. If network management authentication is turned on,
returning to a known state should include attempting authenticated transactions
using different keys (e.g., the current key, the previous key, etc.) until success is
achieved.

Node Resets or Power Cycles: if a node resets while a network management
command is in progress, the reset will likely manifest itself as either a communica-
tion problem or a transaction failure. When EEPROM writes are involved, there is
a significant probability that the location being modified at the time of the reset will

1Bypass offline is defined by the application checking for "offline" events directly and invoking
“offline_confirm” to effect the offline condition. Normally, going offline is handled by the scheduler.
2Note that node resets can take quite a while. The slower a node’s input clock, the longer the reset.
The more offchip EEPROM or RAM, the longer the reset. Durations up to 18 seconds are possible in the
worst case.

Network Management and Diagnostics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 83 of 112

become corrupted (most likely with the erase pattern of 0xFF). This adds consid-
erable complexity to the update key command, as the authentication key could
become corrupted. Thus, in addition to trying the current and previous keys, it may
be appropriate to try variants of the key where each single byte is replaced with the
erase pattern.

A reset during a memory refresh command could result in the corruption of the
configuration or program. Either could be catastrophic depending on the scope of
knowledge in the network management tool. An option here is to put early power
down detection on the network management tool and only issue refresh
commands (with no retries) when the power appears stable (assuming the client
and server share a common power source).

Read/Write Protect Violations: if a node is read/write protected, attempts to write
to the application code area are denied. The client can verify that a write memory
attempt failed for this reason by reading the read_write_protect field of the
read_only_data structure.

Other adverse effects, such as address table and domain changes, need to be carefully
handled and understood by the client. A request can produce a response in a new
domain, for example.

Every network node maintains two checksums, one over the configuration and one
over the application. Following the completion of any of the network addressing
commands that alter the configuration image, a new configuration checksum is
calculated and updated. This results in added time to the execution of these
commands, and the client should take this into account before sending the next
message to the target node. This delay should always take into account the EEPROM
write time multiplied by the number of bytes altered. The delay per byte can be as
long as 20 ms. Therefore an update address command should have a transmit
transaction timeout of at least 20*5 + 30, or 130 ms.

Those commands that automatically update checksums are noted.

11.6 Using Router Network Management Commands

The router shall follow the normal Neuron Chip “states” and must be in the
Application/Configured state in order to operate fully as a router.

All of the commands that affect the routing tables affect only a single router half.
The NM Node Mode command for OFFLINE, ONLINE, and RESTART shall
automatically affect BOTH router halves.

For a router, ONLINE means that the router shall operate normally as described.
OFFLINE means that the router performs no forwarding; all packets not addressed

Network Management and Diagnostics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 84 of 112

to the router that appear in the packet buffer circular lists are dropped. Other than
the dropping of these packets, an OFFLINE router continues to perform normally.

A router shall ignore a certain group of Network Management commands. These
are the broadcast Node Mode commands. This is to prevent a broadcast RESTART
or OFFLINE command from stopping the router and preventing the same broadcast
command from reaching destinations of the other side of the router. Routers
therefore must be RESTARTed or taken OFFLINE individually when desired. A
single service pin must exist for the router, the two router halves shall be
electrically connected via diodes to a grounding switch. Grounding this point shall
send out unique service pin messages on both sides of the router.

11.7 NMPDU Formats and Types

This section lists LonTalk Network Management Protocol Data Units (NMPDUs),
using a notation similar to C structure definitions. The bit and byte ordering rules
defined in Appendix A apply, with the most significant bit of each byte being
transmitted first; the first byte of a record is considered the least significant byte of
that record. In the value section of the descriptions, the value corresponds to a
command number or a response code for that message.

The first byte of all NM message APDUs contains the Destination/Type data which,
for NM requests and commands, is always (binary):

011xxxxx

The <xxxxx> field contains the command code.

Responses that have been generated by the execution of these NM commands are
directed to the Application, as specified by the first byte of the APDU:

00pxxxxx

The <p> field is set to one if the operation succeeded, or zero if it failed. Failures are
usually due to range errors (table boundaries) or EEPROM write failures. The
<xxxxx> field echoes the original NM command code.

The first byte of all ND message APDUs contains the Destination/Type data of:

0101xxxx

The <xxxx> field contains the command code.

ND responses have the following format, where <p> is the same as in N M
responses and <xxxx> mirrors the original command:

Network Management and Diagnostics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 85 of 112

00p1xxxx

The implications of this are that all NM/ND requests are delivered to the NM/ND
layer in the LonTalk protocol, while all NM/ND responses are delivered to the
Application Layer. It is assumed that the responses are to be processed at the
Application Layer.

In this document, only the command field value is described. The <p> field and the
destination code are not included but are assumed to be in place.

Single byte responses are provided for NM operations that are considered non-
idempotent.

It is important to note that this document uses a nomenclature of “byte” for 8-bit
items and “int” for 16-bit items. This is in contrast to Neuron C, which classifies
“int” as an 8-bit item.

11.7.1 Query ID

Query_ID() requests a node, or a set of nodes, to report its Neuron_ID to the
requester. Typically this request is addressed on a single domain as a subnet-wide
broadcast, implying that the client has knowledge of at least the domain and may be
taking orderly probes at subnet addresses in order to interrogate a set of nodes.

To query unconfigured nodes, the selector value within the Query_ID_Request
record is set to 0. In order to query nodes whose “respond to query” bit is set (see
following command), the selector value is ‘1’. Either the subnet or domain wide
broadcast addressing mode is typically used. This command never requires
authentication to be executed.

If supplied, the address and data fields are used as additional qualifiers. The address
mode and address field are used to form an address (see “read memory” for a
description of this process); “count” bytes (1–11) of data starting at that address are
then compared with the supplied data. Only if they match does the query id proceed
(as specified by the “selector”).

For this command only, read protect is assumed to be always on. If the address and
count fall in a read protected area (such as where the authentication keys are
stored), no response is returned.

struct query_id_request {
byte command; /* value = 1 */
byte selector; /* 0 = unconfigured nodes

 1 = respond to query set
 2 = respond to query set and unconfigured */

byte address_mode; /* See “read memory” command */

Network Management and Diagnostics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 86 of 112

byte address_hi;
byte address_lo;
byte count;
byte data; /* “count” bytes of data */

};

struct query_id_response {
byte command; /* value = 1 */
byte Neuron_ID[6];
byte program_id_string[8];

};

11.7.2 Respond to Query

This command sets or clears the “respond to query” bit in the target node(s). When
set, the target shall respond to query id requests that have a selector of ‘1’. It shall
continue in this mode until the node is reset or its bit is cleared via command. This
command is used for network topology interrogation. The “on” version is usually
addressed as subnet broadcast, using the unacknowledged-repeated service. The
“off” version is addressed to a specific node once it has been interrogated. This
command never requires authentication to be executed.

struct respond_to_query_cmd {
byte command; /* value = 2 */
byte mode; /* 1 => ON; 0 => OFF */

};

struct respond_to_query_resp {
byte command; /* value = 2 */

};

11.7.3 Update Domain

This command updates one of the domain entries in the server. Note that the most
significant bit of the node field must be set. Execution of this command updates the
configuration checksum. If a node can only be in a single domain, attempts to
assign domain index ‘1’ shall return an error. If the domain to be updated is the
same as the domain in which the modify message was sent, and the node is in the
“configured” state, then the response shall come back on the new domain and thus
shall not be received by the sender.

Since the encryption key is propagated in the open, this request should only be used
when physical network security can be guaranteed (or security is achieved through
other means).

struct update_domain_request {
byte command; /* value = 3 */
byte domain_index; /* 0 or 1 */
byte domain_id[6];
byte subnet;

Network Management and Diagnostics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 87 of 112

byte node; /* msb must be set */
byte did_length; /* 0, 1, 3, or 6 */
byte encrypt_key[6];

};

struct update_domain_response {
byte command; /* value = 3 */

};

11.7.4 Leave Domain

The node must honor this command even if it still has addresses assigned within
this domain. Internally, the node’s domain length is set to 0xFF and the subnet,
node addresses are set to zero. Also, the authentication key is cleared. The
configuration checksum is updated during the execution of this command. If the
domain to be left is the domain on which the request was received and the node is
configured, no response is sent. If the domain being left is the last domain in which
the node is configured, the node automatically enters the unconfigured state and re-
sets.

struct leave_domain_request {
byte command; /* value = 4 */
byte domain_index; /* 0 or 1 */

};

struct leave_domain_response {
byte command; /* value = 4 */

};

11.7.5 Update Key

This command is used for updating encryption keys. The domain to be used is
specified in the message. The encrypt_key bytes are added to the existing key in a
bytewise fashion (no carry). The configuration checksum is updated by this
command.

struct update_key_request {
byte command; /* value = 5 */
byte domain_index; /* 0 or 1 */
byte encrypt_key[6];

};

struct update_key_response {
byte command; /* value = 5 */

};

Network Management and Diagnostics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 88 of 112

11.7.6 Update Address

This command is executed by index. If the address table entry does not exist, the <p>
bit in the response shall be zero. The configuration checksum is updated by this
command. No cross checking for duplicate addresses or groups is performed.

The form of each address entry in the address table is:

struct group_s {
byte field1; /* b7: 1

b0-b6: group size, 0 for huge */
byte field2; /* b7: domain ref

b0-b6: member number, 0 for huge */
byte field3; /* b4-b7: unackd_rpt timer */

/* b0-b3: retry count */
byte field4; /* b4-b7: receive timer index

b0-b3: transmit timer index */
byte group; /* group id. */

};

struct snode_s {
byte type; /* 1 */
byte field2; /* b7: domain ref set by target

b0-b6: node number */
byte field3; /* b4-b7: unackd_rpt timer */

/* b0-b3: retry count */
byte field4; /* b0-b3: transmit timer index */
byte subnet; /* subnet */

};

struct bdcst_s {
byte type; /* 3 */
byte field2; /* b7: domain ref set by target */

/* b0-b5: backlog; 0 == unknown */
byte field3; /* b4-b7: unackd_rpt timer */

/* b0-b3: retry count */
byte field4; /* b0-b3: transmit timer index */
byte subnet; /* subnet */

};

struct ta_s { /* Turnaround entry */
byte type; /* 0 */
byte ta; /* 1 */
byte field3; /* b4-b7: unackd_rpt timer */

/* b0-b3: retry count */
byte field4; /* b0-b3: transmit timer index */

};

struct empty_s { /* Empty entry */
byte type /* 0 */
byte empty; /* 0 */

};

Network Management and Diagnostics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 89 of 112

struct update_addr_request {
byte command; /* value = 6 */
byte index; /* 0–14 */
union {

struct group_s;
struct snode_s;
struct bdcst_s;
struct ta_s;
struct empty_s;

} address;
};

struct update_addr_response {
byte command; /* value = 6 */

};

11.7.7 Query Address

This command reports an entry within the Neuron Chip’s address table, given an
index.

struct query_addr_request {
byte command; /* value = 7 */
byte index; /* 0–14 */

};

struct query_addr_response {
byte command; /* value = 7 */
union {

struct group_s;
struct snode_s;
struct bdcst_s;
struct ta_s;
struct empty_s;

} address;
};

11.7.8 Query Network Variable Configuration

This command reports the entry in the node’s nv_config table, by index number;
the entry must exist in the table.

struct query_nv_cnfg_request {
byte command; /* value = 8 */
byte nv_index;
[int nv_index16;] /* 16-bit index iff nv_index == 255 */

/* Host nodes only */
};

Network Management and Diagnostics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 90 of 112

struct query_nv_cnfg_response {
byte command; /* value = 8 */
byte field1; /* b7: priority */

/* b6: direction */
/* b0-b5: net var selector—msb */

byte idlo; /* net var selector—lsb */
byte field2; /* b7: turnaround */

/* b5-b6: service */
/* b4: authenticated */
/* b0-b3: address table index */

};

11.7.9 Update Group Address

This command is used to update a group entry in an address table; it is typically
addressed by group. The group size, timer indices, and retry count are updated. The
group member field is left unchanged. The entry is updated based on the domain i n
which the command was received. Therefore, this command is disallowed for
flexible domains. This command updates the configuration checksum.

struct update_group_addr_request {
byte command; /* value = 9 */
struct group_s;
} address;

};

struct update_group_addr_response {
byte command; /* value = 9 */

};

11.7.10 Query Domain

This command is used to retrieve the domain information for one of the two
domains in a node. If the second domain is requested and room for only one
domain exists, an error is returned.

struct query_domain_request {
byte command; /* value = 10 */
byte index; /* Domain index, 0 or 1 */

};

struct query_domain_response {
byte command; /* value = 10 */
byte domain_id[6];
byte subnet;
byte node;
byte did_length; /* 0,1,3, or 6 */
byte encrypt_key[6];

};

Network Management and Diagnostics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 91 of 112

11.7.11 Update Network Variable Configuration

This command is used to add or modify entries to or from the node’s nv_cnfg table,
by an index number. There must be free space in the nv_cnfg table for the entry.
The address table index may be set to 0–15, where 15 indicates that no address table
entry is associated with the network variable. The configuration checksum is
updated by this command. For a network variable with index X, a network variable
selector with the value 0x3FFF-X implies that the network variable is not in a
logical connection (i.e., is not bound).

struct update_nv_cnfg_request {
byte command; /* value = 11 */
byte nv_index; /* 0-255 */
[int nv_index16;] /* 16-bit index iff nv_index == 255 */

/* Host nodes only */
byte field1; /* b7: priority */

/* b6: direction */
/* b0-b5: net var selector—msb */

byte idlo; /* net var selector—lsb */
byte field2; /* b7: turnaround */

/* b5-b6: service */
/* b4: secure */
/* b0-b3: address table index */

};

struct update_nv_cnfg_response {
byte command; /* value = 11 */

};

11.7.12 Set Node Mode

This request instructs the application scheduler to enter either the offline or online
condition, to reset the entire node via an internal reset, or to change the state of a
node. When offline, the application program is halted and NM/ND commands
continue to be processed. The online request instructs the application scheduler to
leave the offline condition and resume operation of the application. One use of the
offline condition is for suspending the application during application EEPROM
downloading.

The service type used for this command varies. For online and offline, no response
is ever returned so request-response cannot be used. Confirmation of the change i n
condition is achieved via issuance of a status request. For state changes, request-
response should be used. Since the state is part of the application, the application
checksum is updated. For reset, only the unack’d (or ack’d if authentication is
required) service type is used. This message is confirmed with a status request. Note
that failure to confirm the reset may indicate that the initial unack’d message was
lost, necessitating a retry of the exchange.

struct set_node_mode_request {
byte command; /* value = 12 */

Network Management and Diagnostics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 92 of 112

byte state; /* 0: offline */
/* 1: online */
/* 2: reset */
/* 3: change state */

byte state_data; /* Iff state=3; see “Node States” for values */

struct set_node_mode_response {
byte command; /* value = 12 Note, no response is provided*/

 /* for offline, online or reset commands */
};

11.7.13 Read Memory

This command is used to read memory. If read/write protect is on, the program can
only read the read_only_data, config_data (see access.h), SNVT table, and RAM or
EEPROM data areas.

The “count” field contains the number of bytes to be read. This number should not
exceed 16 unless the target node has buffers sufficiently large to accommodate the
additional data. All images except the Neuron 3120 Chip image ensure that the
count is not too large for the buffer space available in the node. Attempts to access
too much data result in a failed response.

struct read_memory_request {
byte command; /* value = 13 */
byte address_mode; /* See below */
byte address_hi;
byte address_lo;
byte count;

};

struct read_memory_response {
byte command; /* value = 13 */
byte data[count];

};

/* where “address_mode” determines the physical address as follows: */
/* 0: address = address_hi*256 + address_lo */
/* 1: address = EEPROM read-only address+address_hi*256+address_lo */
/* 2: address = EEPROM configuration address + address_hi*256 + */
/* address_lo */

11.7.14 Write Memory

There are two forms of this command: one form resets the Neuron Chip after
writing, the other does not. Confirmation of the reset form must be performed by
reading back memory using read memory. The non-reset form produces a response
and is conveyed via request-response. The reset form is conveyed using
unacknowledged or unacknowledged-repeated service. The configuration check-
sum is optionally updated. Note that any single write command should not cross
the boundary of the EEPROM memory.

Network Management and Diagnostics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 93 of 112

If read/write protect is on, only the config_data_struct (see access.h) can be written.
The byte count should be limited to 11 bytes unless the target node has buffers that
are sufficiently large to handle more. When writing to EEPROM, the byte count
should be limited to 38 to avoid watchdog timeouts on the target.

struct write_memory_request {
byte command; /* value = 14 */
byte address_mode; /* See comment in read_memory command above */
byte address_hi;
byte address_lo;
byte count;
byte form; /* 0: no reset, no checksum

 1: recalculate both checksums
 4: recalculate just configuration checksum
 8: reset
 9: reset, recalc both checksums
 12: reset, recalc configuration checksum */

byte data[count];
};

struct write_memory_response { /* used only for non-reset writes */
byte command; /* value = 14 */

};

11.7.15 Checksum Recalculate

This command forces the Neuron Chip to compute and store a new configuration
or application checksum. It should be used at the end of any Network Management
sessions that alter the configuration EEPROM image or application EEPROM/RAM
image (unless those commands have specifically performed this operation already,
as with the address commands).

struct checksum_request {
byte command; /* value = 15 */
byte which; /* 1: do application and configuration

/* 4: do configuration only */
};

struct checksum_response {
byte command; /* value = 15 */

};

11.7.16 Install

This command is used during installation for a variety of purposes. The primary
purpose is to perform the wink function. This forces the Neuron Chip to execute a
special “when” clause in the application program called the “wink” clause. This
clause shall execute even if the node is in an unconfigured state. This way, an
installer can signal to a node to do something distinctive (such as blink a light) for

Network Management and Diagnostics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 94 of 112

physical identification purposes. The install command always performs a wink on
non-host1 nodes (request-response cannot be used for this command with non-host
nodes).

For host nodes, the install command has an additional subcommand. If the
subcommand is not present, wink is assumed; if it is present, it invokes a command
as follows:

0: wink
1: send service pin data
2–255: reserved

If the subcommand is “send service pin data”, the subdata field contains the
LONWORKS network interface number. The host node responds with the service pin
data for that LONWORKS network interface. The command field of the
service_pin_message structure in the response contains ‘0’ if the LONWORKS

network interface is functional, and a non zero value otherwise. This command
can be used to methodically process each of the LONWORKS network interfaces
attached to a host.

struct install_msg {
byte command; /* value = 16 */
byte subcommand; /* see above (host node only) */
byte subdata; /* see above (host node only) */

};

struct install_response {
byte command; /* value = 16 */
union {

struct service_pin_message; /* if subcommand == 0 */
} data;

};

11.7.17 Memory Refresh

This command causes the Neuron Chip to rewrite the existing contents of EEPROM
at a specified address for a specified number of bytes. This can be used to periodically
rewrite the contents of on-chip or off-chip EEPROM to extend the retention time of
the memory contents. Note that the Neuron ID is write protected and thus cannot
be rewritten.

An error is returned if a refresh of off-chip memory is requested and none exists.
Also, if “offset” falls beyond the end of the EEPROM area, an error is returned. In
this way, the sender of these commands can simply increment the offset until an
error is returned. The count should be limited to 8 if the target is online and could
be as high as 38 if the target is offline.

1A host node is a microprocessor-based node that uses the Neuron Chip as a communication chip only. A
host node may have one or more LONWORKS network interfaces (LNIs).

Network Management and Diagnostics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 95 of 112

struct memory_refresh_request {
byte command; /* value = 17 */
int offset; /* 16 bit offset from start of EEPROM */
byte count; /* Number of bytes to write */
byte offchip; /* 1=> refresh off chip memory */

};

struct memory_refresh_response {
byte command; /* value = 17 */

};

11.7.18 Query Standard Network Variable Type

This command is used to retrieve Standard Network Variable Type (SNVT) data
from a host node. An error is returned if the Neuron Chip application program is
not configured as a LONWORKS network interface. The requester need know
nothing about physical addresses on the host; instead the requester only deals with
offsets. The requester starts with an offset of 0 and then bumps the offset for each
subsequent request. The byte count should be limited to 16 unless the target node
has sufficiently large buffers to handle larger counts.

struct query_SNVT_request {
byte command; /* value = 18 */
int offset; /* 16 bit offset into micro’s SNVT table */
byte count; /* number of bytes to return (up to 16) */

};

struct query_SNVT_response {
byte command; /* value = 18 */
byte data[count]; /* return data (count bytes) */

};

11.7.19 Network Variable Value Fetch

This message is used to poll network variables. It has two advantages over the net-
work variable poll message: it uses the network variable selector and is thus
independent of configuration, and it also obtains the value regardless of the node's
online/offline condition.

struct nv_fetch_request {
byte command; /* value = 19 */
byte index; /* Network Variable selector */
[int index16;] /* 16-bit index, used only if index == 255 */

/* This format supported only by host nodes*/
};

struct nv_fetch_response {
byte command; /* value = 19 */

Network Management and Diagnostics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 96 of 112

byte index; /* Network Variable selector */
[int index16;] /* Iff index == 255; host nodes only */
byte data[NVLEN]; /* return data (based on NV length) */

};

11.7.20 Service Pin Message

This message is unlike the other network management messages in that it is an
unsolicited message. It is sent over the network from a node when that node’s
service pin is depressed. The message is sent as a domain-wide broadcast on domain
length 0 with a source subnet 0 and node address of 0.

struct service_pin_message {
byte command; /* value = 31 */
byte neuron_id[6];
byte program_id_string[8];
};

11.7.21 Network Management Escape Code

One of the network management command codes is reserved as a escape. The
value of the escape code is 0x7D. Sending the escape code as the network
management command causes the first two bytes of the APDU to be interpreted as
additional command codes. This capability allows the network management
protocol to be extended in product specific ways. For example, this mechanism is
used in the serial LonTalk Adapter and the PC LonTalk adapter products to query
product specific information and to configure application specific information.

If a node responds to network management messages which use the network
management escape code, then that node shall always respond to the Product Query
command. All other commands are product specific and are documented with the
products. The response to this command has two forms. The short form contains
only a single byte to specify the product. The complete form contains the response
code, the product byte (as in the short form), a two byte field for the model number,
a single byte for the firmware version, a byte for the configuration of the device and
a byte for the transceiver type. In the complete response form, the value of the
configuration byte returned is zero unless the device can be put into several modes
or configurations. In this case, the byte contains the current mode or configuration
of the device.

Success or failure is reported on the escape code rather than on the subcode or
command.

struct product_query_request {
byte command; /* Destination: NM, code: 0x7D (escape) */
byte data[2]; /* Product query subcode = 0x01 */

/* Product query command = 0x01 */
};

Network Management and Diagnostics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 97 of 112

struct product_query_short_response {
byte command; /* success = 0x3D, failure = 0x1D */
byte product_ID; /* product identifier */

}

struct product_query_complete_response {
byte response; /* success = 0x3D, failure = 0x1D */
byte product; /* product identifier */
byte model[2]; /* model number */
byte version; /* version number */
byte config; /* current configuration or mode of device*/
byte Xcvr_ID; /* transceiver type */

}

11.7.22 Router Mode

This request instructs the router to perform one of several router related tasks. The
“resume” command returns the router from the “all flood” state. The “init router
tables” command copies all routing tables from EEPROM into the RAM tables (if a
configured router) or sets all RAM tables to flood (if a learning router); this is the
same action that occurs after node reset. The “mode all flood” command causes the
router to forward all packets in the domain. The Router Mode command affects
both router halves, and is conveyed via the Request-Response protocol. Note that
the normal Network Management Node Mode request may be used to take the
entire router offline and online.

struct router_mode_request {
byte command; /* Destination: NM, code: 20 */
byte mode; /* 0: resume, 1: init subnet table,

2: mode flood */
};

struct router_mode_response {
byte command; /* Destination: APPL, code: 20 */

}

11.7.23 Router Clear Group or Subnet Table

This request is used to clear all entries in either the group or subnet routing table
for a single domain for a single router half. The command is segmented to cover 8-
byte sections in order to prevent lengthy EEPROM write operations. This command
is conveyed via the Request-Response protocol. The configuration checksum i n
EEPROM is updated.

struct router_table_clear_request {
byte command; /* Destination: NM, code: 21 */
byte field1; /* b7: 1 = group, 0 = subnet */

/* b6: domain ref */
/* b0-3: 8x index */

}

Network Management and Diagnostics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 98 of 112

struct router_group_clear_response {
byte command; /* Destination: APPL, code: 21 */

}

11.7.24 Router Group or Subnet Table Download

This request is used to configure the entire group or subnet table in EEPROM for the
specified domain for a single router half. The download function is broken into 8-
byte sections. This command is conveyed via the Request-Response protocol. The
configuration checksum in EEPROM is updated.

struct groupsubnet_table_download {
byte command; /* Destination: NM, code: 22 */
byte field1; /* b7: 1 = group, 0 = subnet */

/* b6: domain ref */
/* b0-3: 8x index */

byte table[8]; /* l.s. bit is l.s. group/subnet # */
}

struct groupsubnet_table_download_response {
byte command; /* Destination: APPL, code: 22 */

}

11.7.25 Router Group Forward

This request sets the forwarding flag in the routing table for a given group in the
specified domain. This command is conveyed via the Request-Response protocol.
The configuration checksum in EEPROM is updated if changed.

struct group_forward_request {
byte command; /* Destination: NM, code: 23 */
byte field1; /* b0: 0: RAM only, 1: RAM + EEPROM */

/* b6: domain ref */
byte group; /* 0-255 */

}

struct group_forward_response {
byte command; /* Destination: APPL, code: 23 */

}

11.7.26 Router Subnet Forward

This request sets the forwarding flag in the routing table for a given subnet in the
specified domain. This command is conveyed via the Request-Response protocol.
The configuration checksum in EEPROM is updated if changed.

Network Management and Diagnostics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 99 of 112

struct subnet_forward_request {
byte command; /* Destination: NM, code: 24 */
byte field1; /* b0: 0: RAM only, 1: RAM + EEPROM */

/* b6: domain ref */
byte subnet; /* 1-255 */

}

struct subnet_forward_response {
byte command; /* Destination: APPL, code: 24 */

}

11.7.27 Router Do Not Forward Group

This request clears the forwarding flag in the routing table for a given group in the
specified domain. This command is conveyed via the Request-Response protocol.
The configuration checksum in EEPROM is updated if changed.

struct group_noforward_request {
byte command; /* Destination: NM, code: 25 */
byte field1; /* b0: 0: RAM only, 1: RAM + EEPROM */

/* b6: domain ref */
byte group; /* 0-255 */

}

struct group_noforward_response {
byte command; /* Destination: APPL, code: 25 */

}

11.7.28 Router Do Not Forward Subnet

This request clears the forwarding flag in the routing table for a given subnet in the
specified domain. This command is conveyed via the Request-Response protocol.
The configuration checksum in EEPROM is updated if changed.

struct subnet_noforward_request {
byte command; /* Destination: NM, code: 26 */
byte field1; /* b0: 0: RAM only, 1: RAM + EEPROM */

/* b6: domain ref */
byte subnet; /* 1-255 */

}

struct subnet_noforward_response {
byte command; /* Destination: APPL, code: 26 */

}

11.7.29 Router Group or Subnet Table Report

This request is used to report the current settings of either group or subnet tables i n
EEPROM or RAM for the specified domain for a single router half. The report
function is broken into 8-byte sections. This command is conveyed via the Request-
Response protocol.

Network Management and Diagnostics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 100 of 112

struct groupsubnet_table_report_request {
byte command; /* Destination: NM, code: 27 */
byte field1; /* b7: 1 = group, 0 = subnet */

/* b6: domain ref */
/* b0-3: 8x index */

}

struct groupsubnet_table_report_response {
byte command; /* Destination: APPL, code: 27 */
byte table[8]; /* l.s. bit is l.s. group/subnet # */

}

11.7.30 Router Status

This request is used to report the router configuration and flood/normal modes. It
is conveyed via the Request-Response protocol.

struct router_status_request {
byte command; /* Destination: NM, code: 28 */

}

struct router_status_response {
byte command; /* Destination: APPL, code: 28 */
byte router_cnfg; /* type: 1 = learning, 0 = configured */

/* 2 = bridge, 3 = bridge_repeater */
byte mode; /* 0 = normal, 2 = flood */

}

11.7.31 Router Half Escape Code

Although this is not in itself a network management command, it is included i n
this section for completeness. When this code is placed at the start of the APDU and
is followed by any Network Management or Network Diagnostic command, that
command shall be passed over to the other router half for processing. Any
responses shall be returned in the normal manner.

byte command; /* Destination: NM, code: 30 */

11.8 DPDU Types and Formats

Most Diagnostic PDUs (DPDUs) are conveyed within Session layer Requests and/or
Responses. By default, a DPDU then inherits either the request or the response
attribute of the enveloping SPDU.

This section lists LonTalk Diagnostic Protocol Data Units. The bit and byte ordering
rules defined in Appendix A apply, with the most significant bit of each byte being
transmitted first; the first byte of a record is considered the least significant byte of

Network Management and Diagnostics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 101 of 112

that record. In the value section of the descriptions, the value corresponds to a
command number or a response code for that message. In addition, the string “+
pass/fail” means that a single bit flag is set in the high order bit of the response to
indicate that the command was either successful or that it failed.

11.8.1 Query Status

This command gives a snapshot of a node’s health. It conveys error statistics, reset
information, the node state, the error log, the system image version, and the
Neuron model number. The error statistics, reset cause, and error log can all be
cleared via the “clear status” command. Note that the statistics are also cleared
whenever the node resets. This command never requires authentication to be
executed.

struct query_status_request {
byte command; /* value = 1 */

};

struct query_status_response {
byte command; /* value = 1 */
struct status_response data; /* see below */

};

struct status_response {
int transmission_errors;
int transaction_timeouts;
int receive_transaction_full;
int lost_messages;
int missed_messages;
byte reset_cause;
byte node_state;
byte version;
byte error_log;
byte model_number;

};

These fields are defined as follows:

transmission_errors: This is a count of the number of transmission errors that
have occurred on the network. A transmission error is detected via a CRC error
during packet reception. This could result from a collision, a noisy medium, signal
attenuation, etc.;

transaction_timeouts: This is a count of the number of timeouts that have occurred
in attempting to carry out acknowledged or request/response transactions. A time-
out occurs when a node fails to receive all the expected acknowledgments or
responses after retrying the configured number of times at the configured interval;

receive_transaction_full: This counter reflects the number of times an incoming
unackd_rpt, ackd or request message was lost because there was no more room i n

Network Management and Diagnostics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 102 of 112

the receive transaction database. The size of this database is configured via a
compile time pragma;

lost_messages: This is the number of messages that were addressed to the node
which were thrown away because there was no application buffer available for the
message. The number of application buffers is configured via a compile time
pragma;

missed_messages: This is the number of messages that were on the network but
could not be received because there was no network buffer (packet buffer) available
for the message or the network buffer was too small to receive the message. The
number and size of network buffers are configured via a compile time pragma;

reset_cause: This byte contains the reset cause information. This identifies the
source of the most recent reset. The values for this byte are as follows (X => don’t
care):

Power-up reset 0bXXXXXXX1
External reset 0bXXXXXX10
WDT reset 0bXXXX1100
Software-initiated reset 0bXXX10100

node_state: This contains both the node state and node condition (as defined in the
“Node State” section in the network management section). Values are as follows:

Unconfigured 0x02
Unconfig/App-less 0x03
Configured/online 0x04
Configured/hard-offline 0x06 /* Permanent offline */
Configured/offline 0x0C /* Non-reset retained offline */

/* (note this is actually an */
/* encoding of the node state */
/* of “configured” and the */
/* offline condition) */

Configured/bypass 0x8C /* Non-reset retained bypass- */
/* mode offline Like config- */
/* ured/offline except that */
/* the application went off- */
/* line in bypass mode */

version: The version number reflects the ROM version and may be used by a
network management tool for computing addresses to EEPROM data fields not
supported by the standard NM address assignment/reporting commands. It is also
needed by the linker for resolving references to system functions in the application.
The version number is 1 to 127 for system images and 128 to 255 for custom images.
255 is a special escape version that means more version number information is
available via other commands (this mechanism is not currently implemented);

error_log: The error log contains the most recent error logged by the system. A
value of 0 indicates no error. An error in the range 1..127 is an application error and
unique to the application. An error in the range 128..255 is a system error. These
errors are documented in the “Neuron C Programmer’s Guide;”

Network Management and Diagnostics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 103 of 112

model_number: The model number is the Neuron Chip model (e.g., 3150, 3120,
etc.). The codes for this are as follows:

8: 3120
0: 3150

The model and version numbers together can be used to determine the exact
firmware image in use by a node.

11.8.2 Proxy Status

This command can be used to deliver a command to one or more target nodes via
an agent node. The proxy command is sent to an agent along with a target address
in the APDU. The agent node relays the command to the target and then relays the
response back to the original requester. The proxy command can only be used to
relay a status request or a query id (unconfigured) request. If the original request is a
priority request, it is relayed as a priority request. Although this command never
itself requires authentication to be executed, if the original request is marked to be
authenticated, the relayed request to the target shall also be so marked.

The original requester specifies the target address via data in the form of an address
table entry in the APDU. The agent node uses this to determine the destination
address and the retry/timeout values used during the transaction. There is one
exception—the domain bit is ignored (the message is always relayed in the same
domain as which it was received). Note that the retry/timeout values supplied i n
the target address should result in a shorter transaction duration than those used by
the original requester. In general, this command works best if the agent and target
are on the same channel.

struct proxy_command {
byte command; /* value = 2 */
byte sub_command; /* 0=> query id (unconfigured); 1=> status

 2=> transceiver status request */
union {

struct group_s;
struct snode_s;
struct bdcst_s;
struct nid_s;

} address; /* Address structures as defined in the network
 * management modify address command and below

*/
};

struct nid_s {
byte type; /* 2 */
byte field2; /* b7: domain ref set by target */
byte field3; /* b0-b3: retry count */
byte field4; /* b0-b3: transmit timer index */
byte subnet; /* subnet */

Network Management and Diagnostics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 104 of 112

byte nid[6]; /* Neuron ID */
};

struct proxy_response {
byte command; /* value = 2 */
byte resp_data; /* data and length are functions of the

sub_command */

The response data received by the original requester shall be identical to that which
would have been received as a result of a direct request to the target. Note that i n
the case of a query id (unconfigured) broadcast, a direct message could result i n
multiple responses, whereas a proxy command sent to a single agent with a broad-
cast target would result in only a single response to the original requester.

This command is disallowed if the agent receives the request on a flexible domain.

Finally, if the agent node is in the process of sending outgoing transactions, it may
not be able to deliver the relayed request immediately. Depending on how long this
is delayed, the response may not be received by the original requester in time, even
after several retries. Therefore, a transaction failure for a proxy command is more
likely than for other transactions; this should be taken into account when drawing
conclusions from same. Also, in order for the proxy command to work, the agent
node must have at least two application input buffers.

11.8.3 Clear Status

This command clears a subset of the information in the status response. This
includes the statistics information, the reset cause register and the error log. A
controller that does a status request on a periodic basis may choose to use a clear
command following each successful status response.

struct clear_status_command {
byte command; /* value = 3 */

};

struct clear_status_response {
byte command; /* value = 3 */

};

11.8.4 Query Transceiver Status

This command retrieves the status register information from a transceiver. It fails if
there is no transceiver on the node, or if communication with the transceiver fails.
It returns seven registers’ worth of data regardless of the number of registers that
the transceiver actually supports. It is up to the controller to know how many
registers are valid.

struct query_xcvr_status_command {
byte command; /* value = 4 */

};

Network Management and Diagnostics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 105 of 112

struct query_xcvr_status_response {
byte command; /* value = 4*/
byte data[7]; /* register values */

};

Behavioral Characteristics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 106 of 112

 12. BEHAVIORAL CHARA CTERISTICS

12.1 Channel Capacity and Throughput

In defining the key performance parameters, the following notations are used:

bps raw channel speed in bits/sec
Beta randomizing slot size (bits)
w size of the MAC randomizing window: 16 slots
Dmean= w/2 mean busy channel interpacket spacing: 8 slots
p=(1/2w+pe) probability of packet loss from collisions and

transmission errors
pe probability of loss due to transmission error
AvgPktSize length of the packet including preamble
Ccost collision cost (2 packets)

Assuming zero collisions and zero transmission errors, the number of LonTalk
frames that can be transmitted while using randomizing window w = 2*Dmean is
as follows:

frames = bps / (Beta2*(Dm e a n + #pri slots) + Beta1 + AvgPktSize)
[p k t s / s e c]

Some frames are lost because of collisions and some because of transmission errors.
The packet bandwidth Net_L3 available to the L3 Network Service is then

Net_L3 = frames * (1- p) [p k t s / s e c]

When packets are lost due to collisions, the L4 and L5 protocols must retransmit,
thus further reducing the effective bandwidth. The net bandwidth available to t h e
L4 and L5 protocols when the probability of packet loss is p, is Net_L4

Net_L4 = Net_L3 * (1-Ccost* p)[TPDUs/sec]

Net_L4 is maximized by choosing the proper value of w. This “net bandwidth”
defines the maximum Transaction Rate. With the exception of authenticated
transactions, a LonTalk transaction within a group of N requires N PDUs to be
transmitted. Assuming that all groups have the same size, this rate is

Trans_Rate = Net_L4 / group_size [trans/sec]

Behavioral Characteristics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 107 of 112

Table 12.1 shows the key throughput parameters, using the following assumptions:
error free channel, correct backlog estimation, physical NPDU length of 120 bits, all
Neuron Chips running at 10 MHz clock rate, no priority slots configured on the
channel. The number of transactions per second assumes acknowledged service.
The 120 bit packet length assumes a domain id length of 1 byte, and average user
data size of 3–4 bytes.

Channel Speed

10 kbits/s 78 kbits/s

Capacity 43 388
(Net TPDUs/Second) 36 329

L4 or L5 N = 2 ~ 18 ~ 164
Transactions/Second N = 4 ~ 9 ~ 82
(for Group Size N) N = 8 ~ 4 ~ 41

N = 16 ~ 2 ~ 20

Table 12.1 LonTalk Protocol—Key Throughput Parameters
(For Single Error Free Channel @ 10 kbits/s, and @ 78 kbits/s)

12.2 Network Metrics

For a single channel with backlog BL, the expected mean Network Delay is

N d e l a y = (BL/2 + 1) * busy_cycle
where

busy_cycle = Beta2*(Dmean+ #pri slots) + Beta1 + AvgPktSize

In general case, the delay over k hops is

N de lay = SUM { (BLi/2 + 1) * busy_cycle } i = 1,...,k

What is the worst case delay ?

For a channel or a network where the load exceeds throughput (i.e., BL = 1 is never
true), the worst case Ndelay is unbounded. This may happen with some very small
probability but it may happen. When BL = 1 at least occasionally, Ndelay is bounded.
Its worst case value is then determined by the arrival rate distribution—the more
uniform the distribution, the less is the worst case delay.

Behavioral Characteristics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 108 of 112

Assuming constant transmission error probability pe, and a constant randomizing
window w over each of the k hops, the probability of successful delivery is

P (L3) = (1- p)**k
where

p=(1/2w + pe) is the probability of packet loss
1/2w is the probability of loss due to

collision
pe is the probability of the packet being

corrupted by a transmission error

Graph 12.1 plots the probability of successful delivery (P) of a single packet over k
hops where pe is 1% and w is 16. This yields a probability of error over a single
channel of 4.13%. The probability of a failure in delivery is 1 - P. The probability of
failure is used to calculate the optimal number of attempts to send the packet since
the probability of failure is given by (1-P)**attempts.

Number of Channels Traversed

P
ro

b
ab

ili
ty

 o
f

S
u

cc
es

sf
u

l
D

el
iv

er
y

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

1 2 3 4 5 6 7 8 9 10

Graph 12.1: Probability of Successful Delivery Over k Hops

12.3 Transaction Metrics

The Transaction Completion Time in the single channel, single transaction envi-
ronment is

Behavioral Characteristics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 109 of 112

T t ime = group_size * busy_cycle + Tn p

where Tnp is the transaction processing time at the destination node. This time is
negligible for transport transactions, and it may vary considerably for Request-
Response transactions.

Above, collisions (or transmission errors) were ignored. When collisions and
multiple transactions are considered, this time increases.

T t ime = x * L4_timer + y * busy_cycle + Tn p
where

x = 0, 1, ..., L4_retries
y ≤ max (group_size, BL)

Given that the combined collision + error probability is p, the probability of a
transaction in a group of n completing within k retries is

P {≤ k retries} =

k ≥ 0, n ≥ 2

P {no retry} = (1–p)
n

p
i
 (1–p)

k–i+1
 (1–p)

n–1∑
i=0

k
k+1

i()

where p is the probability of packet loss over the channel.

P{≤ k retries} is computed as a product of the following two probabilities:

P {lose i messages in k+1 attempts}
P {successfully receive all n-1 ACKs given k-i+1 successful msgs}

The first probability is the binomial probability represented by the first three terms
in the equation; the second probability is given by the last term. The above
probabilities are plotted in graph 8.1.

12.4 Boundary Conditions — Power-Up

Power-up has an impact on the Transaction Control sublayer: no duplicate detec-
tion is done for the first transaction following the reset (transaction number 0). For
this reason, the first application operation after a reset should be idempotent.

Rebooting a learning router also has an effect: messages to a specific (subnet, node)
address are routed by flooding until the router learns about the location of that
subnet. This normally happens with the first acknowledgment from that subnet.

Behavioral Characteristics

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 110 of 112

12.5 Boundary Conditions — High Load

Loads exceeding channel capacity will result in increased delays for some trans-
actions. This may lead to timeouts and transactions being aborted with failure or
only partial success.

As long as the estimated and the real backlogs match, channel capacity will stay
constant at the level(s) defined in table 12.1. Backlog mismatch will always reduce
channel capacity. The negative effect of underestimating tends to produce excessive
collisions and loss of throughput. Overestimating the backlog by a small amount
has a relatively small impact on channel throughput, so backlog calculations in the
LonTalk protocol tend to overestimate rather than underestimate the backlog.

PDU Summary

LonTalk Protocol Specification (Created 1989-1994) Echelon Corp. Page 111 of 112

 13. APPENDIX A — PDU SUMMARY

13.1 Formats and Notation

This appendix provides a summary description of all LonTalk Protocol Data Units
(PDUs). PDU syntax is specified pictorially (see figure, following page), with the
following explanatory comments:

• Field Size. The number above each field specifies the field size in bits;

• Field Values. In order to facilitate the description of semantics, most field
values are defined as symbolic ranges. A symbolic range (S0, S1, S2, ..., Sn)
always maps onto a numeric range (0, 1, 2, ..., n) in the order specified;

• Bit Ordering. Bit transmission order within a byte is “least significant
first”, meaning that the least significant bit is transmitted first. In the
attached figures, the least significant bit is the rightmost bit of a byte;

• Byte Ordering. Byte transmission order is also “least significant first”,
meaning that the least significant byte of a field is transmitted first. In the
attached figures, the least significant byte is the leftmost byte of a field.

PD
U

 Sum
m

ary

L
onT

alk P
rotocol S

pecification
(C

reated 1989-1994) E
chelon C

orp.
P

age 1
1

2
 of 112

APDU

Address Formats

TPDU

SPDU

AuthPDU

APDU

Encl.PDU Formats

Protocol
Version

NPDU Version
2 2 2 2 0/8/24/48

PDU Fmt AddrFmt Length Address Domain Encl.PDU

SrcSubnet0:

1:

2a:

2b:

3:

SrcSubnet

SrcSubnet

SrcSubnet

SrcSubnet

8

1

8

48

1 SrcNode DstSubnet

1 SrcNode DstGroup

1 SrcNode DstSubnet 1 DstNode

0 SrcNode DstSubnet 1 DstNode Group

1 SrcNode Neuron ID

1 7 8

7

DstSubnet

Auth
1 3 4

SPDUtype Trans_No

Auth
1 3 4

TPDUtype Trans_No

64
CryptoBytes

CHALLENGE(0)

REPLY(2)

RandomBytes

PPDU
(includes

LPDU, MPDU) 0

1 1 6 16
ByteSync Prior Delta_BL CRCBitSync

11…11

Destin&Type Application/Network Mgmt./
Diagnostic/Foreign Frame

8 0 → n
data

4
Trans_No

2
FMT AuthPDUtype

2

ACKD(0)

REMINDER(4)

REM/MSG(5)

REQUEST(0)

REMINDER(4)

REM/MSG(5)

Length
8

variable-length fields

fixed-length fields

LonTalk® Protocol Data Unit Summary

GrpMemb
8

Group
8

64
Group

8
Group field;
present only
if FMT = 1

Length
0/8/168

same as AddrFmt

APDU

ACK(2) Null Field
0

M_List

M_List

UnACKD_RPT(1) APDU

RESPONSE(2) APDU

Length
24/32/40/48/56/648

Length
0/8/168
M_List

M_List

NPDU
1

AltPath

24/32/40/48/56/64

APDU

APDU

	LonTalk ®Protocol Specification
	Table of Contents
	1. INTRODUCTION
	1.1 Scope And Objectives
	1.2 Document Overview

	2. TERMINOLOGY AND P ROTOCOL OVERVIEW
	2.1 Terminology
	2.2 Overview of LonTalk Protocol Layering

	3. NAMING AND ADDRES SING
	3.1 Address Types and Formats
	3.2 Domains
	3.3 Subnets and Nodes
	3.4 Groups
	3.5 Neuron_ID
	3.6 NPDU Addressing
	3.7 Address Assignment

	4 MAC SUBLAYER
	4.1 Service Provided
	4.2 Interface to the Link Layer
	4.3 Interface to the Physical Layer
	4.4 Collision Detection Notification
	4.5 MPDU Format
	4.6 Predictive p-persistent CSMA — Overview Description
	4.7 Idle Channel Detection
	4.8 Randomizing
	4.9 Backlog Estimation
	4.10 Optional Priority
	4.11 Optional Collision Detection
	4.12 The Predictive CSMA Algorithm
	4.13 Timing

	5. LINK LAYER
	5.1 Assumptions
	5.2 Service Provided
	5.3 LPDU Format
	5.4 The Transmit Algorithm
	5.5 The Receive Algorithm
	5.6 Differential Manchester Encoding

	6. NETWORK LAYER
	6.1 Assumptions
	6.2 Service Provided
	6.3 Service Interface
	6.4 Internal Structuring of the Network Layer
	6.5 NPDU Format
	6.6 Address Recognition
	6.7 Routers
	6.8 Routing Algorithm
	6.9 Learning Algorithm — Subnets

	7. TRANSACTION CONTR OL SUBLAYER
	7.1 Assumptions
	7.2 Service Provided
	7.3 Service Interface
	7.4 State Variables
	7.5 Transaction Control Algorithm

	8. TRANSPORT LAYER
	8.1 Assumptions
	8.2 Service Provided
	8.3 Service Interface
	8.4 TPDU Types and Formats
	8.5 Protocol Diagram
	8.6 Transport Protocol State Variables
	8.7 The Send Algorithm
	8.8 The Receive Algorithm
	8.9 RR Pool Size and Configuration Engineering
	8.10 Number of Retries
	8.11 Choice of Timers

	9. SESSION LAYER
	9.1 Assumptions
	9.2 Service Provided
	9.3 Service Interface
	9.4 Internal Structure of the Session Layer
	9.5 SPDU Types and Formats
	9.6 Protocol Timing Diagrams
	9.7 State Variables
	9.8 Request-Response Protocol — Client Part
	9.9 Request-Response Protocol — Server Part
	9.10 Request-Response Protocol Timers
	9.11 Authentication Protocol
	9.12 Encryption Algorithm
	9.13 Retries and the Role of the Checksum Function
	9.14 Random Number Generation
	9.15 Using Authentication

	10. PRESENTATI ON/APPLICATION LAYER
	10.1 Assumptions
	10.2 Service Provided
	10.3 Service Interface
	10.4 APDU Types and Formats
	10.5 Protocol Diagram
	10.6 Application Protocol State Variables
	10.7 Interactions Between the Offline State and Request - Response
	10.8 Error Notification to the Application Program
	10.8.1 Error Notification for Messages
	10.8.2 Error Notification for Network Variables

	11. NETWORK MANAGEME NT AND DIAGNOSTICS
	11.1 Assumptions
	11.2 Services Provided
	11.3 Network Management and Diagnostics Application Structure
	11.4 Node States
	11.5 Using the Network Management Protocol
	11.5.1 Addressing Considerations
	11.5.2 Making Configuration Changes
	11.5.3 Downloading An Application Program
	11.5.4 Error Handling Conditions

	11.6 Using Router Network Management Commands
	11.7 NMPDU Formats and Types
	11.7.1 Query ID
	11.7.2 Respond to Query
	11.7.3 Update Domain
	11.7.4 Leave Domain
	11.7.5 Update Key
	11.7.6 Update Address
	11.7.7 Query Address
	11.7.8 Query Network Variable Configuration
	11.7.9 Update Group Address
	11.7.10 Query Domain
	11.7.11 Update Network Variable Configuration
	11.7.12 Set Node Mode
	11.7.13 Read Memory
	11.7.14 Write Memory
	11.7.15 Checksum Recalculate
	11.7.16 Install
	11.7.17 Memory Refresh
	11.7.18 Query Standard Network Variable Type
	11.7.19 Network Variable Value Fetch
	11.7.20 Service Pin Message
	11.7.21 Network Management Escape Code
	11.7.22 Router Mode
	11.7.23 Router Clear Group or Subnet Table
	11.7.24 Router Group or Subnet Table Download
	11.7.25 Router Group Forward
	11.7.26 Router Subnet Forward
	11.7.27 Router Do Not Forward Group
	11.7.28 Router Do Not Forward Subnet
	11.7.29 Router Group or Subnet Table Report
	11.7.30 Router Status
	11.7.31 Router Half Escape Code

	11.8 DPDU Types and Formats
	11.8.1 Query Status
	11.8.2 Proxy Status
	11.8.3 Clear Status
	11.8.4 Query Transceiver Status

	12. BEHAVIORAL CHARA CTERISTICS
	12.1 Channel Capacity and Throughput
	12.2 Network Metrics
	12.3 Transaction Metrics
	12.4 Boundary Conditions — Power-Up
	12.5 Boundary Conditions — High Load

	13. APPENDIX A — PDU SUMMARY
	13.1 Formats and Notation
	LonTalk®ProtocolDataUnitSummary

